The aim of this study is to prepare a model for the production of Newcastle disease virus (NDV) lentogenic F strain using cell culture in bioreactor for live attenuated vaccine preparation. In this study, firstly we investigated the growth of Vero cells in several culture media. The maximum cell number was yielded by culture of Vero cells in Dulbecco's Modified Eagle Medium (DMEM) which was 1.93 × 106 cells/ml. Secondly Vero cells were grown in two-litre stirred tank bioreactor by using several commercial microcarriers. We achieved the maximum cell concentration about 7.95 × 105 cells/ml when using Cytodex 1. Later we produced Newcastle Disease virus in stirred tank bioreactor based on the design developed using Taguchi L4 method. Results reveal that higher multiplicity of infection (MOI) and size of cell inoculums can yield higher virus titer. Finally, virus samples were purified using high-speed centrifugation based on 3∗∗(3-1) Fractional Factorial Design. Statistical analysis showed that the maximum virus titer can be achieved at virus sample concentration of 58.45% (v/v), centrifugation speed of 13729 rpm, and centrifugation time of 4 hours. As a conclusion, high yield of virus titer could be achieved through optimization of cell culture in bioreactor and separation by high-speed centrifugation.
Growing cells on microcarriers may have overcome the limitation of conventional cell culture system. However, the surface functionality of certain polymeric microcarriers for effective cell attachment and growth remains a challenge. Polycaprolactone (PCL), a biodegradable polymer has received considerable attention due to its good mechanical properties and degradation rate. The drawback is the non-polar hydrocarbon moiety which makes it not readily suitable for cell attachment. This report concerns the modification of PCL microcarrier surface (introduction of functional oxygen groups) using ultraviolet irradiation and ozone (UV/O) system and investigation of the effects of ozone concentration, the amount of PCL and exposure time; where the optimum conditions were found to be at 60,110.52 ppm, 5.5 g PCL and 60 min, respectively. The optimum concentration of carboxyl group (COOH) absorbed on the surface was 1495.92 nmol/g and the amount of gelatin immobilized was 320 ± 0.9 µg/g on UV/O treated microcarriers as compared to the untreated (26.83 ± 3 µg/g) microcarriers. The absorption of functional oxygen groups on the surface and the immobilized gelatin was confirmed with the attenuated total reflectance Fourier transformed infrared spectroscopy (ATR-FTIR) and the enhancement of hydrophilicity of the surface was confirmed using water contact angle measurement which decreased (86.93°-49.34°) after UV/O treatment and subsequently after immobilization of gelatin. The attachment and growth kinetics for HaCaT skin keratinocyte cells showed that adhesion occurred much more rapidly for oxidized surfaces and gelatin immobilized surface as compared to untreated PCL.
Piper betle is a well-known medicinal plant that cultivated primarily in Southeast Asia. This plant is made up of a large number of bioactive compounds such as tannins, flavonoids (quercetin), eugenol, hydroxychavicol and chavibetol that represent the major components of the plant. This plant has been extensively studied for its pharmacological properties such as antimicrobial, anticancer, antioxidant, antidiabetic and anticancer. Many techniques have been used in Piper betle extraction such as soxhlet extraction, sonication extraction, maceration, ultrasound assisted extraction (UAE), supercritical fluid extraction (SFE) and microwave assisted extraction (MAE). Various benefits of Piper betle extract have been well utilized by the production of numerous types of plant-based products and to date, research on new products based on Piper betle is still being done. Application of Piper betle extract resulting in wide possibilities of usage in future product development. The quality and safety of Piper betle studies provide by toxicity test shows the Piper betle extract exhibit little to none toxicity level at respective concentration. This article aims to present a review of previous studies and research works conducted on Piper betle to serve as a source of additional information for future research related to the Piper betle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.