The tribology properties of TiO2/POE, SiO2/POE and TiO2-SiO2/POE nanolubricants were investigated for an automotive air-conditioning system with an electrically-driven compressor (EDC). A two-step preparation method was used in dispersing TiO2 and SiO2 nanoparticles into Polyol-ester (POE)-based lubricant at different volume concentrations of 0.01 to 0.1%. The coefficient of friction (COF) and wear scar diameter (WSD) were investigated using a Koehler four-ball tribo tester and microscopes. For the TiO2/POE, SiO2/POE and TiO2-SiO2/POE nanolubricants, respectively, the lowest COFs with maximum reduction were attained at 37.5%, 33.5% and 31.6% each at volume concentrations of 0.05%, 0.01% and 0.03%. The highest WSD reduction for the TiO2/POE and SiO2/POE mono nanolubricants were attained at 12.5% and 26.4%, respectively, at the same volume concentration of 0.01%. Meanwhile, the maximum reduction of WSD for the TiO2-SiO2/POE hybrid nanolubricant was reached at 12.4% at 0.03% volume concentration. As a conclusion, mono and hybrid nanolubricants with volume concentrations of less than 0.05% are suggested for use in air-conditioning systems with EDC because of their outstanding tribology performances. Further performance investigation of nanolubricants in the air-conditioning system is required to extend the present work.
The addition of nanoparticles may have a positive or negative impact on the thermal and tribological properties of base lubricant. The objective of this paper is to investigate the effect of nanoparticle dispersion in lubricant base in relation to its application in refrigeration system compressors. An investigation of tribological and thermal properties of nanolubricants for rolling piston rotary systems was carried out through four-ball tribology tests and thermal conductivity measurements. Nanolubricants dispersed with SiO2 and TiO2 nanoparticles were tested at various concentrations and temperatures. The changes in thermal conductivity and coefficient of friction (COF) were analyzed while wear weight loss was also calculated from wear scar size. A regression model of thermal conductivity enhancement was proposed for both types of nanoparticles. Zeta potential results show that nanolubricants have excellent stability. The thermal conductivity increases by the increment of nanoparticle concentration but decreases by temperature. The R-square for the regression model is more than 0.9952 with an average deviation not more than 0.29%. The COF for SiO2/PVE nanolubricant at 0.003 vol.% reduced 15% from the baseline. The COF for nanolubricants exceeds the result for base lubricants when the concentration is more than the threshold value. The optimum concentration of SiO2 and TiO2 nanoparticles improved the thermal and tribological properties of PVE lubricant and may offer an advantage when applied to refrigeration systems.
The use of natural resource materials has gained awareness among industries recently. Today, replacing the material with something more environmentally friendly, especially from waste natural products like pineapple leaf fibre (PALF), is a top concern. This research aims to look at the flexural properties of a glass fibre/pineapple leaf fibre (PALF) hybrid composite. The hand layup and cold compression methods were used to manufacture the hybrid composite plates, which provide 30 wt% of fibre and 70 wt% of the matrix. The form of the hybrid composite was unidirectional with a size of 30 cm 30 cm 3 cm and sandwich stacking. Universal testing equipment was used to conduct the flexural test. With a flexural strength of 290.11 MPa, 5 wt% PALF and 25 wt% bi-directional glass fibre were found to have the maximum flexural strength.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.