Honey is at high risk for the adulteration in global trade. Studies on the authenticity of stingless bee honey from Trigona spp. is necessary since the market demand for this product is increasing, particularly in Malaysia, due to its high nutritional value. FTIR spectroscopy has recently been used approach for a rapid and non-destructive measurement of honey quality and discriminate adulterated honey. The purpose of this study is to determine the FTIR and elementary content of Trigona spp. and Apis spp. honey, and further investigate the influence of the additional adulterants to the measured spectra absorbance. Both Trigona spp. and Apis spp. honey exhibit almost identical IR spectra curves, but there are notable different of their absorbance peak at the identified functional group regions. There is a correlation of the measured absorbance to the actual composition of Trigona spp. honey, which emphasized the low carbohydrate but high water content of the honey. Water or vinegar diluted honey has segregated absorbance peak from the pure honey. Our finding indicated that the FTIR is applicable in discriminate of pure and adulterated Trigona honey, but a further investigation on physico-chemical properties such as elementary content is needed for a comprehensive analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.