This paper presents the electromagnetic interference properties of multi-walled carbon nanotubes (MWCNTs) as a novel nano-reinforcement filler in poly (lactic acid) (PLA)/poly (ethylene glycol) (PEG) polymer matrix that was prepared via melt blending mode. Plasticization of PLA was first carried out by PEG, which overcomes its brittleness problem, in order to enhance its flexibility. A waveguide adapter technique was used to measure the dielectric properties ε r , and S-parameters reflection (S11) and transmission (S21) coefficients. The dielectric properties, microwave attenuation performances, and electromagnetic interference shielding effectiveness (EMISE) for all the material under test have been calculated over the full X-Band (8–12 GHz) due to its importance for military and commercial applications. The prepared samples were studied while using X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), Fourier transforms infrared spectroscopy (FTIR), mechanical properties measurements, as well as thermogravimetric analysis (TGA). The results showed that the dielectric properties increased with increased multi-walled carbon nanotubes (MWCNTs) filler, as well as the shielding effectiveness of the MWCNT/PLA/PEG nanocomposites increased with the increasing of MWCNTs. The highest SE total value was found to be 42.07 dB at 12 GHz for 4 wt.% filler content. It is also observed that the attenuation values of the nanocomposites increased with an increase in MWCNTs loading, as well as the power loss values for all of the samples increased with the increase in MWCNTs loading, except the amount of the transmitted wave through the nanocomposites.
Willemite is an inorganic semiconductor material used for optoelectronic applications. The present study purposes a new polymer thermal treatment method involving calcination temperature to fabricate the willemite nanoparticles. The effects of polyvinylpyrrolidone (PVP) on the structural and optical properties of the material were thoroughly investigated. Thermogravimetric and its derivative confirmed the decomposition behavior of PVP. The minimum calcination temperature to decompose PVP was appraised at 740°C. The FTIR and the Raman analyses confirmed the presence of organic source before the calcination process and the formation of the crystalline structure of the willemite nanoparticles after the heat treatment. The optimum PVP concentration in this study based on the FTIR results was found to be 40 g L-1. This is the minimum concentration at which the willemite nanoparticles remained pure with homogenous distribution. X-ray diffraction analysis of the PVP samples before calcination was confirmed to be amorphous, and upon calcination between 800 and 1000°C, an a-willemite phase was obtained. The morphology and the average particle size were determined with FESEM and HR-TEM analysis. The average particle size is between 23.8 and 36.7 nm. The optical energy band was found to be increasing from 5.24 to 5.32 eV with the corresponding increase in PVP concentration from 20 to 50 g L-1. The findings in this study provides a new pathway to understand the effects of PVP concentrations on the structural and optical properties of willemite semiconductor nanoparticles as it may have key potential applications for future optoelectronic devices.
The effect of warm rolling on the evolution of microstructure and texture in a duplex stainless steel (DSS) was investigated. For this purpose, a DSS steel was warm rolled up to 90 pct reduction in thickness at 498 K, 698 K, and 898 K (225°C, 425°C, and 625°C). The microstructure with an alternate arrangement of deformed ferrite and austenite bands was observed after warm rolling; however, the microstructure after 90 pct warm rolling at 498 K and 898 K (225°C and 625°C) was more lamellar and uniform as compared to the rather fragmented and inhomogeneous structure observed after 90 pct warm rolling at 698 K (425°C). The texture of ferrite in warm-rolled DSS was characterized by the presence of the RD (h011i//RD) and ND (h111i//ND) fibers. However, the texture of ferrite in DSS warm rolled at 698 K (425°C) was distinctly different having much higher fraction of the RD-fiber components than that of the ND-fiber components. The texture and microstructural differences in ferrite in DSS warm rolled at different temperatures could be explained by the interaction of carbon atoms with dislocations. In contrast, the austenite in DSS warm rolled at different temperatures consistently showed pure metal-or copper-type deformation texture which was attributed to the increase in stacking fault energy at the warm-rolling temperatures. It was concluded that the evolution of microstructure and texture of the two constituent phases in DSS was greatly affected by the temperature of warm rolling, but not significantly by the presence of the other phase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.