Power quality is main issue because of the impact to electricity suppliers, equipments, manufacturers and user.To solve the power quality problem, an analysis of power quality disturbances is required to identify and rectify any failures on power system. Most of researchers apply fourier transform in power quality analysis, however the ability of fourier transform is limited to spectral information extraction that can be applied on stationary disturbances. Thus, time-frequency analysis is introduced for analyzing the power quality distubances because of the limitation of fourier transform. This paper presents the analysis of real power quality disturbances using S-transform. This time-frequency distribution (TFD) is presented to analyze power quality disturbances in time-frequency representation (TFR). From the TFR, parameters of the disturbances such as instantaneous of root mean square (RMS), fundamental RMS, total harmonic distortion (THD), total nonharmonic distortion (TnHD) and total waveform distortion (TWD) of the disturbances are estimated. The experimental of three phase voltage inverter and starting motor are conducted in laboratory to record the real power quality disturbances. The disturbances are recorded via data logger system which is mplemented using LabVIEW while the analysis is done using Matlab in offline condition. The results show that S-transform gives good performance in identifying, detecting and analyzing the real power quality disturbances, effectively.
<span>The use of the internet of things (IoT) in solar photovoltaic (PV) systems is a critical feature for remote monitoring, supervising, and performance evaluation. Furthermore, it improves the long-term viability, consistency, efficiency, and system maintenance of energy production. However, previous researchers' proposed PV monitoring systems are relatively complex and expensive. Furthermore, the existing systems do not have any backup data, which means that the acquired data could be lost if the network connection fails. This paper presents a simple and low-cost IoT-based PV parameter monitoring system, with additional backup data stored on a microSD card. A NodeMCU ESP8266 development board is chosen as the main controller because it is a system-on-chip (SOC) microcontroller with integrated Wi-Fi and low-power support, all in one chip to reduce the cost of the proposed system. The solar irradiance, ambient temperature, PV output voltage and PV output current, are measured with photo-diodes, DHT22, impedance dividers and ACS712. While, the PV output power is a product of the PV voltage and PV current. ThingSpeak, an open-source software, is used as a cloud database and data monitoring tool in the form of interactive graphics. The results showed that the system was designed to be highly accurate, reliable, simple to use, and low-cost.</span>
Power quality signals are an important issue to electricity consumers. The signals will affect manufacturing process, malfunction of equipment and economic losses. Thus, an automated monitoring system is required to identify and classify the signals for diagnosis purposes. This paper presents the development of power quality signals classification system using time-frequency analysis technique which is spectrogram. From the time-frequency representation (TFR), parameters of the signal are estimated to identify the characteristics of the signals. The signal parameters are instantaneous of RMS voltage, RMS fundamental voltage, total waveform distortion, total harmonic distortion and total non harmonic distortion. In this paper, major power quality signals are focused based on IEEE Std. 1159-2009 such as swell, sag, interruption, harmonic, interharmonic, and transient. An automated signal classification system using spectrogram is developed to identify, classify as well as provide the information of the signal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.