BackgroundFamilial hypercholesterolemia is a genetic disorder mainly caused by defects in the low-density lipoprotein receptor gene. Few and limited analyses of familial hypercholesterolemia have been performed in Malaysia, and the underlying mutations therefore remain largely unknown.We studied a group of 154 unrelated FH patients from a northern area of Malaysia (Kelantan). The promoter region and exons 2-15 of the LDLR gene were screened by denaturing high-performance liquid chromatography to detect short deletions and nucleotide substitutions, and by multiplex ligation-dependent probe amplification to detect large rearrangements.ResultsA total of 29 gene sequence variants were reported in 117(76.0%) of the studied subjects. Eight different mutations (1 large rearrangement, 1 short deletion, 5 missense mutations, and 1 splice site mutation), and 21 variants. Eight gene sequence variants were reported for the first time and they were noticed in familial hypercholesterolemic patients, but not in controls (p.Asp100Asp, p.Asp139His, p.Arg471Gly, c.1705+117 T>G, c.1186+41T>A, 1705+112C>G, Dup exon 12 and p.Trp666ProfsX45). The incidence of the p.Arg471Gly variant was 11%. Patients with pathogenic mutations were younger, had significantly higher incidences of cardiovascular disease, xanthomas, and family history of hyperlipidemia, together with significantly higher total cholesterol and low density lipoprotein levels than patients with non-pathogenic variants.ConclusionsTwenty-nine gene sequence variants occurred among FH patients; those with predicted pathogenicity were associated with higher incidences of cardiovascular diseases, tendon xanthomas, and higher total and low density lipoprotein levels compared to the rest. These results provide preliminary information on the mutation spectrum of this gene among patients with FH in Malaysia.
Pseudomonas aeruginosa and Streptococcus pyogenes are the most common pathogens to humans and are able to form a biofilm following ineffective precautionary approach. Biofilm is defined as a surface-attached community of bacterium embedded in an extracellular matrix which leads to tremendous problems in the environment, among humans and animals. This study aims to investigate the ability of P. aeruginosa and S. pyogenes to form biofilms in 96-well plate before further study in antibiofilm will be done. Initially, the 96-well plate was added with 100 μl of overnight P. aeruginosa culture with optical density (OD) 0.1 and S. pyogenes culture with OD 0.05. The cultures were incubated for 7 days at 37°C to justify the formation of biofilm. Subsequently, stained blue biofilm was detached from the plate by using 95% ethanol. Biofilms were finally measured using a micro plate reader at 570 nm and were classified based on the adherence strength formula. P. aeruginosa and S. pyogenes biofilms strongly adhered to the plates on days three, four, five and six. Interestingly on day three, biofilms showed the highest formation. However, moderate biofilm formation onto the plates by both P. aeruginosa and S. pyogenes were observed on day two, but non-adherence was observed on days one and seven. Day three is the optimum cultivation period for P. aeruginosa and S. pyogenes to switch into a strong biofilm in microtiter plate and could be beneficial for antibiofilm experiments.
Background and Objectives: Tualang honey (TH) is a Malaysian multifloral jungle honey. In recent years, there has been a marked increase in the number of studies published in medical databases regarding its potential health benefits. The study aimed to investigate the effect of TH against Pseudomonas aeruginosa and Streptococcus pyogenes.
Materials and Methods: The effect of TH on both bacteria was investigated using MIC, MBC, growth curve, time-kill curve, scanning electron microscopy (SEM) and RT-qPCR.
Results: The MIC of TH against P. aeruginosa and S. pyogenes was 18.5% (w/v) and 13% (w/v) respectively and MBC 90 was 25% (w/v) for both bacteria. Spectrophotometric readings of at least 90% inhibition yielded MIC values of TH, 18.5% (w/v) and 15% (w/v) for P. aeruginosa and S. pyogenes respectively. A time–kill curve demonstrated a bactericidal with a 4-log reduction estimated within 8 hours. Using SEM, loss of structural integrity and marked changes in cell shape were observed. RT-qPCR analysis showed that TH reduced the pattern of gene expression in both bacteria, with a trend toward reduced expression of the virulence genes of interest.
Conclusion: This study suggests that TH could potentially be used as an alternative therapeutic agent for microbial infection particularly against these two organisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.