Graphitic carbon is a valuable material that can be utilized in many fields, such as electronics, energy storage and wastewater filtration. Due to the high demand for commercial graphite, an alternative raw material with lower costs that is environmentally friendly has been explored. Amongst these, an agricultural bio-waste material has become an option due to its highly bioactive properties, such as bioavailability, antioxidant, antimicrobial, in vitro and anti-inflammatory properties. In addition, biomass wastes usually have high organic carbon content, which has been discovered by many researchers as an alternative carbon material to produce graphite. However, there are several challenges associated with the graphite production process from biomass waste materials, such as impurities, the processing conditions and production costs. Agricultural bio-waste materials typically contain many volatiles and impurities, which can interfere with the synthesis process and reduce the quality of the graphitic carbon produced. Moreover, the processing conditions required for the synthesis of graphitic carbon from agricultural biomass waste materials are quite challenging to optimize. The temperature, pressure, catalyst used and other parameters must be carefully controlled to ensure that the desired product is obtained. Nevertheless, the use of agricultural biomass waste materials as a raw material for graphitic carbon synthesis can reduce the production costs. Improving the overall cost-effectiveness of this approach depends on many factors, including the availability and cost of the feedstock, the processing costs and the market demand for the final product. Therefore, in this review, the importance of biomass waste utilization is discussed. Various methods of synthesizing graphitic carbon are also reviewed. The discussion ranges from the conversion of biomass waste into carbon-rich feedstocks with different recent advances to the method of synthesis of graphitic carbon. The importance of utilizing agricultural biomass waste and the types of potential biomass waste carbon precursors and their pre-treatment methods are also reviewed. Finally, the gaps found in the previous research are proposed as a future research suggestion. Overall, the synthesis of graphite from agricultural bio-waste materials is a promising area of research, but more work is needed to address the challenges associated with this process and to demonstrate its viability at scale.
Palm slag in previous studies has proven to have the potential to be used as alternative filler in friction composite. However, the reported hardness is still high and not within the proper range and might cause damage to the disc brakes. As is well known, the good damping, soft and flexible nature of rubber, being the main reason for waste tire dust to be selected as an additive to reduce or moderate the hardness of friction palm slag composite. Weight percentage and the filler size of waste tire dust used are the main parameters considered in this research paper. The hardness and wear rate of the friction composite produced are measured. The result revealed that friction composite with ratio of palm slag/waste tire dust (30/10) and the highest filler size (>600 µm) give a moderate hardness with better wear rate which comparable with the commercial brake pad used. Morphological view also give a prove that the worn surface of composite have less wear defects. Overall the used of waste tire dust can improve the hardness and wear rate properties of palm slag friction composites in order to become alternative for non-asbestos brake pads.
This research focus on the effect of polyethylene glycol (PEG) on TiO2 thin film. Sol-gel method is the best method which tends to be used due to its simplicity, good chemical homogeinity and high purity of the product. Titanium (IV) isopropoxide, isopropanol and acetic acid are the three different chemical which being used to make sol solution. The samples was then will annealed at three different temperature which are 400 °C, 500 °C and 600 °C to observed the phase composition of TiO2 added PEG thin film and pure TiO2 by using x-ray diffraction (XRD) analysis and the structural surface by using scanning electron microscope (SEM) analysis. The XRD analysis show the anatase phase present for the sample of pure TiO2 thin film and rutile phase present for the sample of TiO2 added PEG thin film. The micrograph of SEM show that with the addition of PEG at high temperature will give the analysis of flaky large cracked which is not separated to each other on the surface coating. Meanwhile, pure TiO2 give the result of irregular shape structure of the film.
Solder interconnection in three-dimensional (3D) electronic packaging is required to undergo multiple reflow cycles of the soldering process. This paper elucidates the effects of multiple reflow cycles on the solder joints of Sn-3.0Ag-0.5Cu (SAC305) lead (Pb)-free solder with the addition of 1.0 wt.% kaolin geopolymer ceramics (KGC). The samples were fabricated using powder metallurgy with the hybrid microwave sintering method. Apart from using conventional cross-sectioned microstructure imaging, advanced synchrotron real-time in situ imaging was used to observe primary IMC formation in SAC305-KGC solder joints subjected to multiple reflow soldering. The addition of KGC particles in SAC305 suppressed the Cu6Sn5 IMC’s growth as primary and interfacial layers, improving the shear strength after multiple reflow soldering. The growth rate constant for the interfacial Cu6Sn5 IMC was also calculated in this study. The average growth rate of the primary Cu6Sn5 IMCs decreased from 49 µm/s in SAC305 to 38 µm/s with the addition of KGC particles. As a result, the average solidified length in the SAC305-KGC is shorter than SAC305 for multiple reflow soldering. It was also observed that with KGC additions, the growth direction of the primary Cu6Sn5 IMC in SAC305 changed from one growth to two growth directions. The observed results can be attributed to the presence of KGC particles both at grains of interfacial Cu6Sn5 IMCs and at the surface of primary Cu6Sn5 IMC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.