In order to pursue rapid development of the new generation of wireless communication systems and elevate their security and efficiency, this paper proposes a novel scheme for automatic dual determination of modulation types and signal to noise ratios (SNR) for next generations of wireless communication systems, fifth-generation (5G) and beyond. The proposed scheme adopts unique signatures depicted in two-dimensional asynchronously sampled in-phase-quadrature amplitudes' histograms (2D-ASIQHs)-based images and applies the support vector machines (SVMs) tool. Along with the estimation of the instantaneous SNR values over 0-35 dB range, the determination of nine modulation types that belong to different modulation categories i.e., phase-shift keying (Binary-PSK, Quadrature-PSK, and 8-PSK), amplitude-shift keying (2-ASK and 4-ASK) and quadrature-amplitude modulation (4-QAM, 16-QAM, 32-QAM, and 64-QAM) could be achieved by this scheme. The application of this scheme has been simulated using a channel model that is impaired by additive white Gaussian noise (AWGN) and Rayleigh fading, covering a broad range of SNRs of 0-35 dB. The performance of this dual-determination scheme shows high modulation recognition accuracy and low mean SNR estimation error. Therefore, it can be a better alternative for designers of next generation wireless communication systems.
The deployment of the millimeter (mmWave) frequency spectrum by fifth-generation (5G) device-to-device (D2D) wireless networks is anticipated to meet the growing demands for increased capacity. The antenna is regarded of as an important determinant that guarantees the maximum performance of wireless communication. This paper presents a low-profile magneto-electric (ME) dipole antenna for 5G mmWave D2D communication. A single-element quasi-loop radiator was designed to excite horizontal polarization, and a coaxial probe was used to produce vertical polarization. Subsequently, the structure of the radiator was transformed into a two-element quasi-loop antenna to achieve an omnidirectional radiation pattern with relatively enhanced gain. A coaxially fed T-junction microstrip element was implemented to equally distribute the signal between the two quasi-loop radiators and attain proper impedance matching. Furthermore, a pair of shorting pins was introduced into the two-element design to maintain the circularly polarized (CP) radiation. The finest values of the axial ratio and |S<sub>11</sub>| were derived by rigorously optimizing all the geometry parameters. Both single-element and two-element quasiloop antennas were fabricated and characterized experimentally on the air substrate. The advantage of avoiding a physical substrate is to realize a wide bandwidth, circumvent dielectric losses, and ascertain the maximum gain. The measured and simulated results agree thoroughly with each other. Stable in-band CP radiation were accomplished, thus confirming an appropriate field vector combination from the coaxial probe and the radiator. The finalized antenna engaged an area of ~7.6λ<sup>2</sup><sub>0</sub> for operation at 23.9–30.0 GHz with an axial ratio <3 dB, radiation efficiency ~80%, and gain >5 dBic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.