While it is well documented that aflatoxin B1 (AFB1); one of the most toxic food contaminants is linked to the development of depression. However, the mechanism on how it affects the gut and brain health leading to depressive-like behavior remains unclear. This study was conducted to determine the effect of AFB1 on the progression of depressive-like behavior. Thirty-two (n = 32) male Sprague Dawley rats were randomly allocated into four groups: control, low-dose (5 μg AFB1/kg), high-dose (25 μg AFB1/kg) and positive control group; exposed on chronic unpredictable mild stress (CUMS). After 4 weeks of exposure, sucrose preference test (SPT) and force swim test (FST) were used to measure behavioral despair. Fecal samples were selectively cultured to profile the bacteria. Body weight and relative organs weights were compared among groups. AFB1 and CUMS caused reduction in body weight and food intake as well as increased relative weight of adrenal glands, liver, and brain. Rats in AFB1 and CUMS groups had suppressed sucrose preference and prolonged immobility time in FST, wherein this could indicate anhedonia. Besides, fecal count of Lactobacillus spp. was significantly low following AFB1 exposure, with increasing count of Bifidobacterium spp, in comparison to the control. Indeed, further biochemical analysis and metagenomic approach are warranted to explore the underlying mechanisms on the role of gut microbiota dysbiosis and dysregulation of gut-brain axis due to AFB1 neurotoxicity on the progression of depressive-like behavior.
The co-occurrence and accumulation of mycotoxin in food and feed constitutes a major issue to food safety, food security, and public health. Accurate and sensitive mycotoxins analysis can avoid toxin contamination as well as reduce food wastage caused by false positive results. This mini review focuses on the recent advance in detection methods for multiple mycotoxins, which mainly depends on immunoassay technologies. Advance immunoassay technologies integrated in mycotoxin analysis enable simultaneous detection of multiple mycotoxins and enhance the outcomes’ quality. It highlights toxicogenomic as novel approach for hazard assessment by utilizing computational methods to map molecular events and biological processes. Indeed, toxicogenomic is a powerful tool to understand health effects from mycotoxin exposure as it offers insight on the mechanisms by which mycotoxins exposures cause diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.