There has been a dearth on studies of odour pollution in Malaysia due constraints such as lack of measurement equipments, guidelines and legal act for such operational endeavour. Despite the media publication on odour pollution, actions and enforcement were ineffective due to limitations in regulations and operationals standards.In particular, scientific studies on odour concentrations and intensity were difficult to be implemented due to lack of equipments for measuring the phenomenon.Comparatively, researchers in Japan, European Union, Australia and New Zealand have paid serious attention on odour pollutions 1 . Their studies not only conducted to measure the odour concentrations, intensity, components, impact on health and people well-being but also involved in
This study examined the impact of WTP operation on health, psychology and physiology of the sensitive receivers at Taman Semarak, Bandar Baru Nilai, Negeri Sembilan. Building WTP around residential areas is a necessity for treating domestic waste water. Poor management of WTP and inefficient waste treatment adversely impact the physical and human environment. One major impact of WTP operation is odour pollution. The sensitive receivers were residents living about 200 m from the WTP at the Taman Semarak. Data was obtained through a survey of the 100 sensitive receivers. The findings indicated that there were influences of odour from the operation of WTP on the sensitive receivers in the vicinity. Almost 2/3 of the sensitive receivers confirmed the health, psychological, physiological impact due to the WTP operation.
The generation of waste batteries is increasing due to the wide application and short life span of batteries. The heavy metals used inside a battery are highly toxic and can cause harm to humans and to the environment. However, if waste batteries are recovered properly through a recycling process, precious metals inside the batteries can be extracted. In general, there are three methods for recycling waste batteries, namely pyrometallurgy, hydrometallurgy and bio-hydrometallurgy. This article reviews and discusses the efficiency and effectiveness of these methods in recycling waste batteries. Based on the review, each recycling method has its specific characteristics. The hydrometallurgy method tends to be used for recycling Li-ion batteries while the pyrometallurgy method tends to eliminate plumbum in automotive waste batteries. In general, the hydrometallurgical method is commonly used for recycling batteries due to its shorter process and lower cost.
Background: Transforming the abundance of palm oil mill effluent (POME) sludge into beneficial substances such as an organic amendments is vital in the recycling of waste. Vermicomposting from treated POME sludge (TPS) was evaluated on the effect of soil physicochemical properties, crop performances and to determine the best treatment effect on the biomass of the hybrid grain maize (Zea mays L.).
Methods: The experimental layout was designed in a randomized complete block design (RCBD). The grain maize cultivated in Bungor series soil (Ultisol) comprising of (T1) control (NPK fertilizer), (T2) 1 kg of vermicompost, (T3) 2 kg vermicompost, (T4) 1 kg TPS and T5 (2 kg TPS) with six replications, for a period of 100 days from June to September 2019. Half of the NPK fertilizer dosage applied from the recommended practices.
Result: The treatments with 50% reduction of NPK rate significantly (p less than 0.05) affected soil physicochemical properties. The dry matter production, crop performance analysis (net photosynthesis, stomata conductance and transpiration rate) and root weight density were also increased significantly using 2 kg of vermicompost treatment. Vermicompost application demonstrated the best treatment effect on soil properties and grain maize productivity. Utilization of POME sludge waste into organic amendment through vermicomposting approach would become very crucial practices to be adopted in reducing the abundance waste.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.