We report highly hydrogen selective Pd contacted ZnO nanorods based sensor detecting low concentration even at low operating temperature of 50 °C. The sensor performance was investigated for various gases such as H2, CH4, H2S and CO2 at different operating temperatures from 50 °C to 175 °C for various gas concentrations ranging from 7 ppm to 10,000 ppm (1%). The sensor is highly efficient as it detects hydrogen even at low concentration of ~7 ppm and at operating temperature of 50 °C. The sensor’s minimum limit of detection and relative response at 175 °C were found 7 ppm with ~38.7% for H2, 110 ppm with ~6.08% for CH4, 500 ppm with ~10.06% for H2S and 1% with ~11.87% for CO2. Here, Pd exhibits dual characteristics as metal contact and excellent catalyst to hydrogen molecules. The activation energy was calculated for all the gases and found lowest ~3.658 kJ/mol for H2. Low activation energy accelerates desorption reactions and enhances the sensor’s performance.
Vertically well aligned ZnO nanorods (NRs) were grown on Si(100) substrate using RF magnetron sputtering technique. Scanning electron microscopy images confirms uniform distribution of NRs on 2 in. wafer with average diameter, height and density being $75 nm, $850 nm, and $1.5 Â 10 10 cm À2 , respectively. X-ray diffraction reveals that the ZnO NRs are grown along c-axis direction with wurtzite crystal structure. Cathodoluminescence spectroscopy, which shows a single strong peak around 3.24 eV with full width half maxima 130 meV, indicates the high crystalline and optical quality of ZnO and very low defect density. Vertically aligned nanosensors were fabricated by depositing gold circular Schottky contacts on ZnO NRs. Resistance responses of nanosensors were observed in the range from 50 to 150 C in 1% and 5% hydrogen in argon environment, which is below and above the explosive limit (4%) of hydrogen in air. The nanosensor's sensitivity increases from 11% to 67% with temperature from 50 to 150 C and also shows fast response time (9-16 s) and moderate recovery time (100-200 s). A sensing mechanism is proposed based on Schottky barrier changes at heterojunctions and change in depletion region of NRs. V C 2015 AIP Publishing LLC. [http://dx.
Room temperature hydrogen sensors were fabricated from Au embedded ZnO nano-networks using a 30 mW GaN ultraviolet LED. The Au-decorated ZnO nano-networks were deposited on a SiO/Si substrate by a chemical vapour deposition process. X-ray diffraction (XRD) spectrum analysis revealed a hexagonal wurtzite structure of ZnO and presence of Au. The ZnO nanoparticles were interconnected, forming nano-network structures. Au nanoparticles were uniformly distributed on ZnO surfaces, as confirmed by FESEM imaging. Interdigitated electrodes (IDEs) were fabricated on the ZnO nano-networks using optical lithography. Sensor performances were measured with and without UV illumination, at room temperate, with concentrations of hydrogen varying from 5 ppm to 1%. The sensor response was found to be ∼21.5% under UV illumination and 0% without UV at room temperature for low hydrogen concentration of 5 ppm. The UV-photoactivated mode enhanced the adsorption of photo-induced O and O ions, and the d-band electron transition from the Au nanoparticles to ZnO-which increased the chemisorbed reaction between hydrogen and oxygen. The sensor response was also measured at 150 °C (without UV illumination) and found to be ∼18% at 5 ppm. Energy efficient low cost hydrogen sensors can be designed and fabricated with the combination of GaN UV LEDs and ZnO nanostructures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.