The function of the neocortex is fundamentally determined by its repeating microcircuit motif, but also by its rich, hierarchical, interregional structure with a highly specific laminar architecture. The last decade has seen the emergence of extensive new data sets on anatomy and connectivity at the whole brain scale, providing promising new directions for studies of cortical function that take into account the inseparability of whole-brain and microcircuit architectures. Here, we present a data-driven computational model of the anatomy of non-barrel primary somatosensory cortex of juvenile rat, which integrates whole-brain scale data while providing cellular and subcellular specificity. This multiscale integration was achieved by building the morphologically detailed model of cortical circuitry embedded within a volumetric, digital brain atlas. The model consists of 4.2 million morphologically detailed neurons belonging to 60 different morphological types, placed in the nonbarrel subregions of the Paxinos and Watson atlas. They are connected by 13.2 billion synapses determined by axo-dendritic overlap, comprising local connectivity and long-range connectivity defined by topographic mappings between subregions and laminar axonal projection profiles, both parameterized by whole brain data sets. Additionally, we incorporated core- and matrix-type thalamocortical projection systems, associated with sensory and higher-order extrinsic inputs, respectively. An analysis of the modeled synaptic connectivity revealed a highly nonrandom topology with substantial structural differences but also synergy between local and long-range connectivity. Long-range connections featured a more divergent structure with a comparatively small group of neurons serving as hubs to distribute excitation to far away locations. Taken together with analyses at different spatial granularities, these results support the notion that local and interregional connectivity exist on a spectrum of scales, rather than as separate and distinct networks, as is commonly assumed. Finally, we predicted how the emergence of primary sensory cortical maps is constrained by the anatomy of thalamo-cortical projections. A subvolume of the model comprising 211,712 neurons in the front limb, jaw, and dysgranular zone has been made freely and openly available to the community.
A key challenge in sensor networks is ensuring the sustainability of the system at the required performance level, in an autonomous manner. Sustainability is a major concern because of severe resource constraints in terms of energy, bandwidth and sensing capabilities in the system. In this paper, we envision the use of a new design dimension to enhance sustainability in sensor networks -the use of controlled mobility. We argue that this capability can alleviate resource limitations and improve system performance by adapting to deployment demands. While opportunistic use of external mobility has been considered before, the use of controlled mobility is largely unexplored. We also outline the research issues associated with effectively utilizing this new design dimension. Two system prototypes are described to present first steps towards realizing the proposed vision.
Advances in DSP technology create important avenues of research for embedded vision. One such avenue is the investigation of tradeoffs amongst system parameters which affect the energy, accuracy, and latency of the overall system. This paper reports work on benchmarking the performance and cost of Scale Invariant Feature Transform (SIFT) for visual classification on a Blackfin DSP processor. Through measurements and modeling of the camera sensor node, we investigate system performance (classification accuracy, latency, energy consumption) in light of image resolution, arithmetic precision, location of processing (local vs. server-side), and processor speed. A case study on counting eggs during avian nesting season is used to experimentally determine the tradeoffs of different design parameters and discuss implications to other application domains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.