Background: On March 11, 2020, the World Health Organization (WHO) declared the novel coronavirus disease (COVID-19) a global pandemic. Starting in December 2019 from China, the first cases were officially announced on February 19 in Qom city, Iran. As of April 3, 2020, 206 countries have reported a total of 932166 cases with 46764 deaths. Along with China, USA, Italy, Spain, and Germany, Iran has been suffering the hardest burden of COVID-19 outbreak. Worse still, countries like Iran are struggling with the double burden of political sanctions to provide lifesaving medical equipment and medicines to combat the emergency. Methods: Using systematic document content analysis and through the lenses of health policy triangle, this article aims to compare the policies and strategies that Iran is adopting, with the experience and recommendations of China and WHO to combat COVID-19. Results: Iran has formulated contextual-based policies to combat COVID-19 outbreak before and after virus entrance. Insufficient whole-government, whole-society approach in managing the outbreak, inadequate lifesaving and protective equipment, and delayed decisive governance are the biggest challenges in policy making to combat COVID-19. COVID-19 policies are a public health concern and require professional advocacy attempts through appropriate inter-sectoral collaboration and whole-government coalitions. Conclusion: COVID-19 is an unfolding outbreak; hence, policy learning is crucial to formulate appropriate policies and implement them accordingly. Iran has made many efforts to defeat the outbreak, but more coherent, timely and efficient action is required, now, more than ever, to save lives and slow the spread of this pandemic.
Current guidance issued by the US FDA to assess the impact of renal impairment on the pharmacokinetics of a drug under development has recently been updated to include evaluation of drugs with nonrenal elimination routes. Renal impairment not only affects elimination of the drug in the kidney, but also the nonrenal route of drugs that are extensively metabolized in the liver. Renal failure may influence hepatic drug metabolism either by inducing or suppressing hepatic enzymes, or by its effects on other variables such as protein binding, hepatic blood flow and accumulation of metabolites. Prior simulation of the potential exposure of individuals with renal impairment may help in the selection of a safe and effective dosage regimen. In this article, we discuss the application of a systems biology approach to simulate drug disposition in subjects with renal impairment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.