Nowadays, there are many new methods for slope stability analysis; including probabilistic methods assessing geotechnical uncertainties to develop safety factors. In this paper, a reliability index analysis for the Sungun copper mine slope stability is evaluated based on three methods of uncertainties consisting Taylor series method, Rosenblueth point estimate method and Monte-Carlo simulation method. Sungun copper mine will be one of the Iran's biggest mines with final pit's height of 700 meters. For this study two of its main slopes were assessed, one dipping to the NE (030) and the other to the SE (140). Probability density function of cohesion and angle of friction for the slopes were developed using limit equilibrium methods. These shear strengths were then used to determine the probability density function of safety factor and reliability index using the probabilistic methods. Results of the probabilistic analysis indicate that with ascending values of the uncertainties the reliability index decreases. Furthermore, it was determined that with the Monte Carlo simulation the seed number used has little effect on the reliability index of the safety factor especially with seed numbers in excess of 1200. Variations in the overall reliability index of safety factor were observed between the two slopes and this difference is explained by the differences in complexities of the geology within the cross-section.
CO2 injection into geological formations is considered one way of mitigating the increasing levels of carbon dioxide concentrations in the atmosphere and its effect on and global warming. In regard to sequestering carbon underground, different countries have conducted projects at commercial scale or pilot scale and some have plans to develop potential storage geological formations for carbon dioxide storage. In this study, pure CO2 injection is examined on a model with the properties of bunter sandstone and then sensitivity analyses were conducted for some of the fluid, rock and injection parameters. The results of this study show that the extent to which CO2 has been convected in the porous media in the reservoir plays a vital role in improving the CO2 dissolution in brine and safety of its long term storage. We conclude that heterogeneous permeability plays a crucial role on the saturation distribution and can increase or decrease the amount of dissolved CO2 in water around ± 7% after the injection stops and up to 13% after 120 years. Furthermore, the value of absolute permeability controls the effect of the Kv/Kh ratio on the CO2 dissolution in brine. In other words, as the value of vertical and horizontal permeability decreases (i.e., tight reservoirs) the impact of Kv/Kh ratio on the dissolved CO2 in brine becomes more prominent. Additionally, reservoir engineering parameters, such as well location, injection rate and scenarios, also have a high impact on the amount of dissolved CO2 and can change the dissolution up to 26%, 100% and 5.5%, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.