Stable but not quite cubic
The black, photoactive phase of formamidinium (FA) perovskites, which is usually stabilized by cation alloying to avoid the formation of inactive hexagonal phases, is assumed to be cubic. High-resolution microscopy studies by Doherty
et al
. using nanoscale probes revealed that these FA-rich phases are not cubic but rather undergo slight tilting (by two degrees) of the octahedra. Black phases can have localized regions of hexagonal phases that nucleate degradation. Surface-bound ethylenediaminetetraacetic acid stabilized the tilted phase of pure FA lead triiodide against environmental degradation. —PDS
A simple methodology is developed to directly synthesize three-dimensional (3D) electrochemically supercapacitive arrays, consisting of multiwalled carbon nanotubes conformally covered by nanocrystalline vanadium nitride, firmly anchored to glassy carbon or Inconel electrodes. These nanostructures demonstrate a respectable specific capacitance of 289 F g–1, which is achieved in 1 M KOH electrolyte at a scan rate of 20 mV s–1. The well-connected highly electrically conductive structures exhibit a superb rate capability; at a very high scan rate of 1000 mV s–1 there is less than a 20% drop in the capacitance relative to 20 mV s–1. Such rate capability has never been reported for VN and is highly unusual for any other oxide or nitride. These 3D arrays also display nearly ideal triangular voltage profiles during constant current charge–discharge cycling. Analysis of the post-electrochemically cycled samples indicates negligible changes occurring in the VN nanocrystallite morphology, but a modification in the structure of the oxidized surface. We envision that the direct synthesis approach employed in this study may serve as a “drop-in” platform for large-scale commercial fabrication of a variety of carbon nanotube-supported functional materials that require excellent electrical conductivity to the underlying support.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.