Zinc-air batteries have attracted much attention and received revived research efforts recently due to their high energy density, which makes them a promising candidate for emerging mobile and electronic applications. Besides their high energy density, they also demonstrate other desirable characteristics, such as abundant raw materials, environmental friendliness, safety, and low cost. Here, the reaction mechanism of electrically rechargeable zinc-air batteries is discussed, different battery configurations are compared, and an in depth discussion is offered of the major issues that affect individual cellular components, along with respective strategies to alleviate these issues to enhance battery performance. Additionally, a section dedicated to battery-testing techniques and corresponding recommendations for best practices are included. Finally, a general perspective on the current limitations, recent application-targeted developments, and recommended future research directions to prolong the lifespan of electrically rechargeable zinc-air batteries is provided.
A highly selective and durable electrocatalyst for carbon dioxide (CO2) conversion to formate is developed, consisting of tin (Sn) nanosheets decorated with bismuth (Bi) nanoparticles. Owing to the formation of active sites through favorable orbital interactions at the Sn‐Bi interface, the Bi‐Sn bimetallic catalyst converts CO2 to formate with a remarkably high Faradaic efficiency (96%) and production rate (0.74 mmol h−1 cm−2) at −1.1 V versus reversible hydrogen electrode. Additionally, the catalyst maintains its initial efficiency over an unprecedented 100 h of operation. Density functional theory reveals that the addition of Bi nanoparticles upshifts the electron states of Sn away from the Fermi level, allowing the HCOO* intermediate to favorably adsorb onto the Bi‐Sn interface compared to a pure Sn surface. This effectively facilitates the flow of electrons to promote selective and durable conversion of CO2 to formate. This study provides sub‐atomic level insights and a general methodology for bimetallic catalyst developments and surface engineering for highly selective CO2 electroreduction.
This review summarizes recent research progress and perspectives on bi-functional oxygen electrocatalysts active towards oxygen reduction and oxygen evolution reactions for rechargeable metal–air batteries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.