According to the Federal Highway Administration (FHWA), US work zones on freeways account for nearly 24% of nonrecurring freeway delays and 10% of overall congestion. Historically, there have been limited scalable datasets to investigate the specific causes of congestion due to work zones or to improve work zone planning processes to characterize the impact of work zone congestion. In recent years, third-party data vendors have provided scalable speed data from Global Positioning System (GPS) devices and cell phones which can be used to characterize mobility on all roadways. Each work zone has unique characteristics and varying mobility impacts which are predicted during the planning and design phases, but can realistically be quite different from what is ultimately experienced by the traveling public. This paper uses these datasets to introduce a scalable Work Zone Mobility Audit (WZMA) template. Additionally, the paper uses metrics developed for individual work zones to characterize the impact of more than 250 work zones varying in length and duration from Southeast Michigan. The authors make recommendations to work zone engineers on useful data to collect for improving the WZMA. As more systematic work zone data are collected, improved analytical assessment techniques, such as machine learning processes, can be used to identify the factors that will predict future work zone impacts. The paper concludes by demonstrating two machine learning algorithms, Random Forest and XGBoost, which show historical speed variation is a critical component when predicting the mobility impact of work zones.
The aim of deploying intelligent transportation systems (ITS) is often to help engineers and operators identify traffic congestion. The future of ITS-based traffic management is the prediction of traffic conditions using ubiquitous data sources. There are currently well-developed prediction models for recurrent traffic congestion such as during peak hour. However, there is a need to predict traffic congestion resulting from non-recurring events such as highway lane closures. As agencies begin to understand the value of collecting work zone data, rich data sets will emerge consisting of historical work zone information. In the era of big data, rich mobility data sources are becoming available that enable the application of machine learning to predict mobility for work zones. The purpose of this study is to utilize historical lane closure information with supervised machine learning algorithms to forecast spatio-temporal mobility for future lane closures. Various traffic data sources were collected from 1,160 work zones on Michigan interstates between 2014 and 2017. This study uses probe vehicle data to retrieve a mobility profile for these historical observations, and uses these profiles to apply random forest, XGBoost, and artificial neural network (ANN) classification algorithms. The mobility prediction results showed that the ANN model outperformed the other models by reaching up to 85% accuracy. The objective of this research was to show that machine learning algorithms can be used to capture patterns for non-recurrent traffic congestion even when hourly traffic volume is not available.
Probe vehicle trajectory data has the potential to transform the current practice of traffic signal optimization. Current scalable trajectory data is limited in both the penetration rate and the ping frequency, or the length of time between vehicle waypoints. This paper introduces a methodology to create binary vehicle trajectories which can be used in a neural network to predict when vehicles will arrive at a virtual detector. The methodology allows for vehicles with ping frequencies of up to 60 s to be utilized for the optimization of offsets at signalized intersections. A nine-signal corridor in west Michigan was used to test the proposed methodology. The neural network was compared to traditional linear interpolation strategies and found to improve the root mean squared error of the arrival times by up to 6.18 s. Using the virtual detector data stacked over time to optimize the offsets of the corridor resulted in 77% of the benefit of an offset optimization performed with continuously collected high resolution signal controller data. In the era of big data, this alternative approach can assist with the large-scale implementation of traffic signal performance measures for improved operations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.