A Hamiltonian path is a path in an undirected graph, which visits each node exactly once and returns to the starting node. Finding such paths in graphs is the Hamiltonian path problem, which is NP-complete. In this paper, for the first time, a comparative study on metaheuristic algorithms for finding the shortest Hamiltonian path for 1071 Iranian cities is conducted. These are the main cities of Iran based on social-economic characteristics. For solving this problem, four hybrid efficient and effective metaheuristics, consisting of simulated annealing, ant colony optimization, genetic algorithm, and tabu search algorithms, are combined with the local search methods. The algorithms’ parameters are tuned by sequential design of experiments (DOE) approach, and the most appropriate values for the parameters are adjusted. To evaluate the proposed algorithms, the standard problems with different sizes are used. The performance of the proposed algorithms is analyzed by the quality of solution and CPU time measures. The results are compared based on efficiency and effectiveness of the algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.