Multiple sclerosis (MS) is an autoimmune disorder of central nervous system with several genetic and environmental risk factors. Genes with regulatory roles on immune system have been implicated in its pathogenesis. Recently, long non-coding RNAs (lncRNAs) have been demonstrated to control some aspects of immune response. Among them is antisense non-coding RNA in the INK4 locus (ANRIL) whose involvement in NF-κB signaling pathway has been highlighted. In the current study, we evaluated the association between rs1333045, rs4977574, rs1333048, and rs10757278 variants of ANRIL and MS risk in a population of 410 Iranian MS patients and 410 healthy subjects. There was no significant difference in allele and genotype frequencies between MS patients and healthy subjects. However, haplotype analysis (rs1333045, rs1333048, rs4977574, and rs10757278 respectively) demonstrated protective effect of CCGG and TAAA haplotypes against MS (P values of 0.043 and 0.0026 respectively). In addition, TAGG and CCGA haplotypes were significantly associated with MS risk in the studied population (P values of 0.0065 and 0.024 respectively). The present study reveals a possible role for ANRIL in the pathogenesis of MS.
Background The Glenohumeral internal-rotation deficit (GIRD) is related to the altered eccentric external-rotator (ER), the concentric internal-rotator (IR), muscle strength, and the ER: IR ratio. GIRD has been documented as a risk factor for shoulder injuries. However, few studies have investigated the effect of an exercise training on these parameters in athletes with GIRD. Therefore, the purpose of this study was to evaluate the effects of an 8-week throwing exercise with a TheraBand for retraining the rotator cuff on Electromyography (EMG) activity of selected muscles, rotator cuff muscle strength, the glenohumeral (GH) joint IR range of motion (ROM) and GH joint position sense in asymptomatic male volleyball players with GIRD. Methods Sixty male volleyball players with GIRD were randomized into either a training group or a control group. The experimental group underwent an 8-week throwing exercise with a TheraBand including 5 sessions of stretching and 3 sessions of strengthening exercises per week. The control group received an active self-exercise program. EMG (onset time and muscle activation), shoulder range of motion (ROMs), strength and GH joint position sense were all assessed pre and post trainings. Results There were statistically significant within-group differences in the EMG activity of the anterior deltoid (p = 0.005), middle deltoid (p = 0.007), posterior deltoid (p = 0.004), infraspinatus (p = 0.001) and supraspinatus (p = 0.001) muscles, IR ROM (p = 0.001), rotator cuff muscle strength ratio (p = 0.001), and GH joint position sense (p = 0.033) in the experimental group. A 2 × 2 analysis of variance with a mixed model design and independent and paired t-tests were used for statistical analysis. Conclusions Throwing exercise with a TheraBand improved shoulder muscle activation, IR ROM, rotator cuff muscle strength ratio and GH joint position sense in participants with GIRD. These findings may improve the treatment of GIRD in a clinical setting. Although the results are significant, further studies should follow up the long-term effects of the Throwing exercise with a TheraBand on GIRD. Trial registration Current Controlled Trials using the UMIN-RCT website with ID number of, UMIN000038416 “Retrospectively registered” at 2019/10/29.
Purpose Gait analysis is an important index in the clinical treatment of people with anterior cruciate ligament (ACL) injury. Following unilateral ACL reconstruction (ACLR), the knee kinetic asymmetries are likely to affect the gait cycle. Therefore, the aim of this study was to examine the symmetries of vertical ground reaction force (vGRF) and select the knee muscle activity in gait cycles in participants with and without unilateral ACLR. Methods In this cross‐sectional study, vGRF and muscle activity data in difference gait cycles were collected from 56 male subjects (28 with unilateral ACLR and 28 healthy subjects) using force plate and electromyography (EMG), respectively. MATLAB software was used for data analysis and independent t test was employed to compare the two groups. Results No significant difference was seen between the two groups in the variable of first peak force symmetry (n.s). However, there was a significant difference in the second‐peak force symmetry index between the two groups (p ≤ 0.001). Regarding muscle activity symmetry in the braking phase of gait, a significant difference was observed in rectus femoris between the two groups (p ≤ 0.001), while no difference was seen in medial gastrocnemius and biceps femoris activity (n.s). In the propulsive phase of gait, there was a significant difference in medial gastrocnemius and biceps femoris muscles activity between the two groups (p ≤ 0.001), while no difference was found in rectus femoris muscle activity (n.s). Conclusions The results revealed that unilateral ACLR creates asymmetry in vGRF and muscle activities in different phases of the gait cycle. So, more attention should be paid to this problem in clinical settings, and also to the use of therapeutic interventions to reduce the amount of kinetic asymmetries. Level of evidence III.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.