Although conventional regulatory T cells (Tregs) are sufficient in controlling low residual T-cell activation in ART-treated patients, they are not efficient in controlling exaggerated immune activation associated with high levels of HIV replication in primary HIV infection (PHI). Our previous data suggested that double negative (DN) T cells including mainly γδ DN T cells play a role in the control of immune activation in PHI. Since γδ T cells are capable of exerting regulatory functions, we investigated their implication as Tregs in PHI as well as chronic HIV infection (CHI). In a cross-sectional study of 58 HIV-infected patients, in the primary and the chronic phase either ART-treated or untreated (UT), we analyzed phenotype and cytokine production of γδ T cells using flow cytometry. Cytokine production was assessed following in vitro stimulation with isopentenyl pyrophosphate or plate-bound anti-CD3/anti-CD28 monoclonal antibodies. We found that the proportion of γδ T cells negatively correlated with CD8 T-cell activation in PHI patients. Furthermore, we found that in these patients, the Vδ2 receptor bearing (Vδ2+) γδ T cells were strongly activated, exhibited low terminal differentiation, and produced the anti-inflammatory cytokine, TGF-β. In contrast, in UT-CHI, we observed a remarkable expansion of γδ T cells, where the Vδ2+ γδ T cells comprised of an elevated proportion of terminally differentiated cells producing high levels of IFN-γ but very low levels of TGF-β. We also found that this loss of regulatory feature of γδ T cells in CHI was a lasting impairment as we did not find recovery of TGF-β production even in ART-CHI patients successfully treated for more than 5 years. Our data therefore suggest that during the primary HIV infection, Vδ2+ γδ T cells may act as Tregs controlling immune activation through production of TGF-β. However, in CHI, γδ T cells transform from an anti-inflammatory into pro-inflammatory cytokine profile and participate in sustenance of immune activation.
When dengue virus (DENV)-infected mosquitoes use their proboscis to probe into human skin during blood feeding, both saliva and virus are released. During this process, cells from the epidermis and dermis layers of the skin, along with small blood vessels, may get exposed to or infected with DENV. In these microenvironments of the skin, the presence of DENV initiates a complex interplay among the DENV-infected and non-infected neighboring cells at the initial bite site. Previous studies suggested that DENV-infected human dermal fibroblasts (HDFs) participate in the immune response against DENV by secreting soluble mediators of innate immunity. In the present study, we investigated whether DENV-infected HDFs activate human dermal microvascular endothelial cells (HDMECs) in co-cultures. Our results suggest that co-cultures of DENV-infected HDFs and HDMECs elicit soluble mediators that are sufficient to reduce viral replication, activate HDMECs, and induce leukocyte migration through HDMEC monolayers. These effects were partly dependent on HDF donor and DENV serotype, which may provide novel insights into the natural variation in host susceptibility to DENV disease.
COVID-19 was declared an international public health emergency in January, and a pandemic in March of 2020. There are over 125 million confirmed COVID-19 cases that have caused over 2.7 million deaths worldwide as of March 2021. COVID-19 is caused by the SARS-CoV-2 virus. SARS-CoV-2 presents a surface “spike” protein that binds to the ACE2 receptor to infect host cells. In addition to the respiratory tract, SARS-Cov-2 can also infect cells of the oral mucosa, which also express the ACE2 receptor. The spike and ACE2 proteins are highly glycosylated with sialic acid modifications that direct viral-host interactions and infection.
Maackia amurensis
seed lectin (MASL) has a strong affinity for sialic acid modified proteins and can be used as an antiviral agent. Here, we report that MASL targets the ACE2 receptor, decreases ACE2 expression and glycosylation, suppresses binding of the SARS-CoV-2 spike protein, and decreases expression of inflammatory mediators by oral epithelial cells that cause ARDS in COVID-19 patients. In addition, we report that MASL also inhibits SARS-CoV-2 infection of kidney epithelial cells in culture. This work identifies MASL as an agent with potential to inhibit SARS-CoV-2 infection and COVID-19 related inflammatory syndromes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.