Recently, suspensions of several nanoparticles or nanocomposites have attained a vast field of application in biomedical research works in some specified conditions and clinical trials. These valuable suspensions, which allow the nanoparticles to disperse and act in homogenous and stable media, are named as nanofluids. Several studies have introduced the advantages of nanofluids in biomedical approaches in different fields. Few review articles have been reported for presenting an overview of the wide biomedical applications of nanofluids, such as diagnosis and therapy. The review is focused on nanosuspensions, as the nanofluids with solid particles. Major applications are focused on nanosuspension, which is the main type of nanofluids. So, concise content about major biomedical applications of nanofluids in drug delivery systems, imaging, and antibacterial activities is presented in this paper. For example, applying magnetic nanofluid systems is an important route for targeted drug delivery, hyperthermia, and differential diagnosis. Also, nanofluids could be used as a potential antibacterial agent to overcome antibiotic resistance. This study could be useful for presenting the novel and applicable methods for success in current medical practice.
Cyanobacteria are photosynthetic microorganisms which can be found in various environmental habitats. These photosynthetic bacteria are considered as promising feedstock for the production of the third‐ and the fourth‐generation biofuels. The main subject of this review is highlighting the significant aspects of the biofuel production from cyanobacteria. The most recent investigations about the extraction or separation of the bio‐oil from cyanobacteria are also adduced in the present review. Moreover, the genetic engineering of cyanobacteria for improving biofuel production and the impact of bioinformatics studies on the designing better‐engineered strains are mentioned. The large‐scale biofuel production is challenging, so the economic considerations to provide inexpensive biofuels are also cited. It seems that the future of biofuels is strongly dependent to the following items; understanding the metabolic pathways of the cyanobacterial species, progression in the construction of the engineered cyanobacteria, and inexpensive large‐scale cultivation of them.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.