Cadmium-free silver-indium-sulfide (Ag-In-S or AIS) chalcopyrite quantum dots (QDs) as well as their core-shell structures (AIS/ZnS QDs) are being paid significant attention in biomedical applications because of their low toxicity and excellent optical properties. Here we report a simple and safe synthetic system to prepare high quality AIS and AIS/ZnS QDs using thermal decomposition. The synthetic system simply involves heating a mixture of silver acetate, indium acetate, and oleic acid in dodecanethiol at 170 °C to produce AIS QDs with a 13% quantum yield (QY). After ZnS shell growth, the produced AIS/ZnS QDs achieve a 41% QY. To facilitate phase transfer and bioconjugation of AIS/ZnS QDs for cellular imaging, these QDs were loaded into the core of PLGA-PEG (5k:5k) based micelles to form AIS/ZnS QD-micelles. Cellular imaging studies showed that chlorotoxin-conjugated QD-micelles can be specifically internalized into U-87 brain tumor cells. This work discloses that the scalable synthesis of AIS/ZnS QDs and the facile surface/interface chemistry for phase transfer and bioconjugation of these QDs may open an avenue for the produced QD-micelles to be applied to the detection of endogenous targets expressed on brain tumor cells, or more broadly to cell- or tissue-based diagnosis and therapy.
Cadmium (Cd) and zinc (Zn) alloyed copper-indium-sulfide (Cu-In-S or CIS) nanocrystals (NCs) in several nanometers were prepared using thermal decomposition methods, and the effects of Cd and Zn on optical properties, including the tuning of NC photoluminescence (PL) wavelength and quantum yield (QY), were investigated. It was found that incorporation of Cd into CIS enhances the peak QY of NCs whereas zinc alloying diminishes the peak. In contrast with Zn alloying, Cd alloying does not result in a pronounced luminescence blue shift. The further PL decay study suggests that Cd alloying reduces surface or intrinsic defects whereas alloying with Zn increases the overall number of defects.
Cadmium-free I-III-VI nanocrystals (NCs) have recently attracted much research interests due to their excellent optical properties and low toxicity. In this work, with a simple heat-up synthetic system to prepare high quality Ag-In-S (AIS) NCs and their core/shell structures (AIS/ZnS NCs), we investigated the effect of different indium precursors (indium acetate and indium chloride) on NC optical properties. The measurements on photoluminescence spectra of AIS NCs show that the photoluminescence peak-wavelength of AIS NCs using indium acetate is in the range from 596 to 604 nm, and that of AIS NCs using indium chloride is from 641 to 660 nm. AIS and AIS/ZnS NCs using indium acetate present around 15% and 40% QYs, and both AIS and AIS/ZnS NCs using indium chloride present around 31% QYs. The photoluminescence decay study indicates that the lifetime parameters of AIS and AIS/ZnS using indium chloride are 2 ~ 4 times larger than those of AIS and AIS/ZnS NCs using indium acetate. Moreover, AIS NCs using indium chloride have a slower photobleaching dynamics than AIS NCs using indium acetate, and ZnS shell coating on both types of AIS NCs significantly enhances their photostability against UV exposure. We believe that the unique optical properties of AIS and AIS/ZnS NCs will open an avenue for these materials to be employed in broad electronic or biomedical applications.
Zwitterionic quantum dots prepared through incorporated zwitterionic ligands on quantum dot surfaces, are being paid significant attention in biomedical applications because of their excellent colloidal stability across a wide pH and ionic strength range, antifouling surface, good biocompatibility, etc. In this work, we report a dual-lipid encapsulation approach to prepare bioconjugatbale zwitterionic quantum dots using amidosulfobetaine-16 lipids, dipalmitoyl-sn-glycero-3-phosphoethanolamine lipids with functional head groups, and CuInS2/ZnS quantum dots in a tetrahydrofuran/methanol/water solvent system with sonication. Amidosulfobetaine-16 is a zwitterionic lipid and dipalmitoyl-sn-glycero-3-phosphoethanolamine, with its functional head, provides bioconjugation capability. Under sonication, tetrahydrofuran/methanol containing amidosulfobetaine-16, dipalmitoyl-sn-glycero-3-phosphoethanolamine, and hydrophobic quantum dots are dispersed in water to form droplets. Highly water-soluble tetrahydrofuran/methanol in droplets is further displaced by water, which induces the lipid self-assembling on hydrophobic surface of quantum dots and thus forms water soluble zwitterionic quantum dots. The prepared zwitterionic quantum dots maintain colloidal stability in aqueous solutions with high salinity and over a wide pH range. They are also able to be conjugated with biomolecules for bioassay with minimal nonspecific binding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.