An important concern that limits the RAP content in asphalt mixtures is the fact that the aged binder that is present in the RAP can cause premature cracking. Rejuvenators are frequently added to high RAP mixtures to enhance the properties of the binder. There is no existing method to predict the longevity of a rejuvenated asphalt. This study investigated the aging of rejuvenated binders and compared their durability with that of virgin asphalt. Various samples with different types and proportions of RAP, virgin binder, and rejuvenator were aged by RTFO and three cycles of PAV. DSR and BBR tests were conducted to examine the high-temperature and low-temperature rheological properties of binders. Results indicated that the type and dosage of the rejuvenator have a great influence on the aging rate and durability of the binder. Some rejuvenators make the binder age slower, while others accelerate aging. These observations confirm the importance of evaluating the long-term aging of recycled binders. For this purpose, critical PAV time was proposed as a measure of binder’s longevity.
Segregation determination in the asphalt pavement is an issue causing many disputes between agencies and contractors. The visual inspection method has commonly been used to determine pavement texture and in-place core density test used for verification. Furthermore, laser-based devices, such as the Florida Texture Meter (FTM) and the Circular Track Meter (CTM), have recently been developed to evaluate the asphalt mixture texture. In this study, an innovative digital image processing approach is used to determine pavement segregation. In this procedure, the standard deviation of the grayscale image frequency histogram is used to determine segregated regions. Linear Discriminate Analysis (LDA) is then implemented on the obtained standard deviations from image processing to classify pavements into the segregated and nonsegregated areas. The visual inspection method is utilized to verify this method. The results have demonstrated that this new method is a robust tool to determine segregated areas in newly paved FC9.5 pavement types.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.