Oxidative stress has a proven role in pathophysiology of acute respiratory distress syndrome. The antioxidant drugs, especially N-acetylcysteine (NAC) have been used for years to overcome oxidative stress effects in patients. In the present study we have investigated the effects of NAC treatment (IV NAC in 150mg/kg at the first day followed by 50mg/kg/day for three days) on 27 ICU patients with ALI/ARDS considering the glutathione-S-transferase genetic variations, as an important enzyme contributing in oxidative stress pathways. The results indicated that NAC improved oxygenation (increase in PaO(2)/FiO(2)) and decreased mortality rate in treated patients compared to control group (p<0.05). Evaluation of three isoforms of glutathione-S-transferase (GST M1, P1 and T1), in these patients have showed an association between GST M1 null, and GST M1 and T1 double null polymorphisms with increased mortality in control group, suggesting antioxidant therapy critical for this group of patients.
In acute respiratory distress syndrome (ARDS), there is extensive overproduction of free radicals to the extent that endogenous anti-oxidants are overwhelmed, permitting oxidative cell damage. The present study examined the benefit of the anti-oxidant compound N-acetylcysteine (NAC) in the management of ARDS by measuring patient's intracellular glutathione (inside red blood cells) and extracellular (plasma) anti-oxidant defense biomarkers and outcome. Twenty-seven ARDS patients were recruited from the intensive care unit of a teaching Hospital and randomly divided into two groups. Both groups were managed similarly by regular treatments but 17 patients received NAC 150 mg/kg at the first day that followed by 50 mg/kg/day for three days and 10 patients did not receive NAC. Treatment by NAC increased extracellular total anti-oxidant power and total thiol molecules and also improved intracellular glutathione and the outcome of the patients. In conclusion, patients with ARDS are in a deficient oxidant—anti-oxidant balance that can get a significant benefit if supplemented with NAC. Human & Experimental Toxicology (2007) 26, 697—703
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.