Purpose The purpose of this study is use to density functional theory (DFT) to investigate the molecular adsorption by PEDOT:PSS for different doping levels. DFT calculations are performed using the SIESTA code. In addition, the non-equilibrium Green’s function method is used within the TranSIESTA code to determine the quantum transport properties of molecular nanodevices. Design/methodology/approach Density functional theory (DFT) is used to investigate the molecular adsorption by PEDOT:PSS for different doping levels. DFT calculations are performed using the SIESTA code. In addition, the non-equilibrium Green’s function method is used within the TranSIESTA code to determine the quantum transport properties of molecular nanodevices. Findings Simulation results show very good sensitivity of Pd-doped PEDOT:PSS to ammonia, carbon dioxide and methane, so this structure cannot be used for simultaneous exposure to these gases. Silver-doped PEDOT:PSS structure provides a favorable sensitivity to ammonia in addition to exhibiting a better selectivity. If the experiment is repeated, the sensitivity is increased for a larger concentration of the applied gas. However, the sensitivity will decrease at a higher ratio than smaller concentrations of gas. Originality/value The advantages of the proposed sensor are its low-cost implementation and simple fabrication process compared to other sensors. Moreover, the proposed sensor exhibits appropriate sensitivity and repeatability at room temperature.
The interactions between poly (3,4‐ethylene dioxythiophene) poly (styrenesulfonate) (PEDOT:PSS) and small gas molecules are studied using non‐equilibrium Green's function formalism based on the density functional theory. The proposed method is implemented in the Tran SIESTA code to benefit from the potential application of PEDOT:PSS as a gas sensor. The results show that doping with nanoparticles can drastically improve the sensitivity of polymer‐based chemical gas sensors. Moreover, among various PEDOT:PSS doping materials, silver nanoparticles have an appropriate response to ammonia, while platinum shows the best response to carbon dioxide. The numerical results can be useful to design PEDOT:PSS‐based gas sensors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.