The natural history of brain growth in autism spectrum disorders remains unclear. Cross-sectional studies have identified regional abnormalities in brain volume and cortical thickness in autism, although substantial discrepancies have been reported. Preliminary longitudinal studies using two time points and small samples have identified specific regional differences in cortical thickness in the disorder. To clarify age-related trajectories of cortical development, we examined longitudinal changes in cortical thickness within a large mixed cross-sectional and longitudinal sample of autistic subjects and age- and gender-matched typically developing controls. Three hundred and forty-five magnetic resonance imaging scans were examined from 97 males with autism (mean age = 16.8 years; range 3-36 years) and 60 males with typical development (mean age = 18 years; range 4-39 years), with an average interscan interval of 2.6 years. FreeSurfer image analysis software was used to parcellate the cortex into 34 regions of interest per hemisphere and to calculate mean cortical thickness for each region. Longitudinal linear mixed effects models were used to further characterize these findings and identify regions with between-group differences in longitudinal age-related trajectories. Using mean age at time of first scan as a reference (15 years), differences were observed in bilateral inferior frontal gyrus, pars opercularis and pars triangularis, right caudal middle frontal and left rostral middle frontal regions, and left frontal pole. However, group differences in cortical thickness varied by developmental stage, and were influenced by IQ. Differences in age-related trajectories emerged in bilateral parietal and occipital regions (postcentral gyrus, cuneus, lingual gyrus, pericalcarine cortex), left frontal regions (pars opercularis, rostral middle frontal and frontal pole), left supramarginal gyrus, and right transverse temporal gyrus, superior parietal lobule, and paracentral, lateral orbitofrontal, and lateral occipital regions. We suggest that abnormal cortical development in autism spectrum disorders undergoes three distinct phases: accelerated expansion in early childhood, accelerated thinning in later childhood and adolescence, and decelerated thinning in early adulthood. Moreover, cortical thickness abnormalities in autism spectrum disorders are region-specific, vary with age, and may remain dynamic well into adulthood.
LAY ABSTRACT Since the impairments associated with autism spectrum disorder (ASD) tend to persist or worsen from childhood into adulthood, it is of critical importance to examine how the brain develops over this growth epoch. We report initial findings on whole and regional longitudinal brain development in 100 male participants with ASD (226 high-quality MRI scans) compared to 56 typically developing male controls (TDCs) (117 high-quality scans) from childhood into adulthood, for a total of 156 participants scanned over an eight-year period. We provide volumetric growth curves for the entire brain, total gray matter (GM), frontal GM, temporal GM, parietal GM, occipital GM, total cortical white matter (WM), corpus callosum, caudate, thalamus, total cerebellum, and total ventricles. Mean volume of cortical WM was reduced significantly. Decreases in regional mean volumes in the ASD sample were most often due to decreases during late adolescence and adulthood. The growth curve of whole-brain volume showed increased volumes in young children with autism and subsequently decreased during adolescence to meet the TDC curve between 10 and 15 years of age. The volume of many structures continued to decline atypically into adulthood in the ASD sample. The data suggest that ASD is a dynamic disorder with complex changes in whole and regional brain volumes that change over time from childhood into adulthood. SCIENTIFIC ABSTRACT Since the impairments associated with autism spectrum disorder (ASD) tend to persist or worsen from childhood into adulthood, it is of critical importance to examine how the brain develops over this growth epoch. We report initial findings on whole and regional longitudinal brain development in 100 male participants with ASD (226 high-quality MRI scans; mean inter-scan interval 2.7 years) compared to 56 typically developing male controls (TDCs) (117 high-quality scans; mean inter-scan interval 2.6 years) from childhood into adulthood, for a total of 156 participants scanned over an eight-year period. This initial analysis includes between one and three high-quality scans per participant that have been processed and segmented to date, with 21% having one scan, 27% with two scans and 52% with three scans in the ASD sample; corresponding percentages for the TDC sample are 30%, 30%, and 40%. The proportion of participants with multiple scans (79% of ASDs and 68% of TDCs) was high in comparison to that of large longitudinal neuroimaging studies of typical development. We provide volumetric growth curves for the entire brain, total gray matter (GM), frontal GM, temporal GM, parietal GM, occipital GM, total cortical white matter (WM), corpus callosum, caudate, thalamus, total cerebellum, and total ventricles. Mean volume of cortical WM was reduced significantly. Mean ventricular volume was increased in the ASD sample relative to the TDCs across the broad age range studied. Decreases in regional mean volumes in the ASD sample most often were due to decreases during late adolescence and adulthood. The grow...
BackgroundThe corpus callosum is the largest white matter structure in the brain, and it is the most consistently reported to be atypical in diffusion tensor imaging studies of autism spectrum disorder. In individuals with typical development, the corpus callosum is known to undergo a protracted development from childhood through young adulthood. However, no study has longitudinally examined the developmental trajectory of corpus callosum in autism past early childhood.MethodsThe present study used a cohort sequential design over 9 years to examine age-related changes of the corpus callosum in 100 males with autism and 56 age-matched males with typical development from early childhood (when autism can first be reliably diagnosed) to mid-adulthood (after development of the corpus callosum has been completed) (3 to 41 years of age).ResultsThe group with autism demonstrated a different developmental trajectory of white matter microstructure in the anterior corpus callosum’s (genu and body) fractional anisotropy, which suggests atypical brain maturation in these regions in autism. When analyses were broken down by age group, atypical developmental trajectories were present only in the youngest participants (10 years of age and younger). Significant main effects for group were found in terms of decreased fractional anisotropy across all three subregions of the corpus callosum (genu, body, and splenium) and increased mean diffusivity, radial diffusivity, and axial diffusivity in the posterior corpus callosum.ConclusionsThese longitudinal results suggest atypical early childhood development of the corpus callosum microstructure in autism that transitions into sustained group differences in adolescence and adulthood. This pattern of results provides longitudinal evidence consistent with a growing number of published studies and hypotheses regarding abnormal brain connectivity across the life span in autism.Electronic supplementary materialThe online version of this article (doi:10.1186/s13229-015-0001-8) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.