Clinical and animal studies have reported the influence of sex on the incidence and progression of tendinopathy, which results in disparate structural and biomechanical outcomes. However, there remains a paucity in our understanding of the sex-specific biological mechanisms underlying effective tendon healing. To overcome this hurdle, our group has investigated the impact of sex on tendon regeneration using the super-healer Murphy Roths Large (MRL/MpJ) mouse strain. Despite a shared scarless healing capacity, we have shown that MRL/MpJ patellar tendons exhibit sexually dimorphic regulation of gene expression for pathways involved in fibrosis, cell migration, and extracellular matrix (ECM) remodeling following an acute midsubstance injury. Moreover, we previously found decreased matrix metalloproteinase-2 (MMP-2) activity in female MRL/MpJ tendons after injury. Thus, we hypothesized that MRL/MpJ scarless tendon healing is mediated by sex-specific and temporally distinct orchestration of cell-ECM interactions. Accordingly, the present study comparatively evaluated MRL/MpJ tendon cells under two-dimensional (glass) and three-dimensional (nanofiber scaffolds) culture platforms to examine cell behavior under biochemical and biophysical cues associated with tendon homeostasis and healing. Female MRL/MpJ cells showed reduced 2D migration and spreading area accompanied with enhanced mechanosensing, 2D ECM alignment, and fibronectin-dependent cell proliferation. Interestingly, female MRL/MpJ cells cultured on 3D isotropic scaffolds showed diminished ECM deposition and alignment. Regardless of culture condition and sex, MRL/MpJ cells outperformed B6 cells and elicited a universal regenerative cellular phenotype. These results illustrate the utility of these in vitro systems for elucidating regenerative tendon cell biology, which will facilitate the long-term development of more equitable therapeutics.
Clinical and animal studies have reported the influence of sex on the incidence and progression of tendinopathy, which results in disparate structural and biomechanical outcomes. However, there remains a paucity in our understanding of the sex‐specific biological mechanisms underlying effective tendon healing. To overcome this hurdle, our group has investigated the impact of sex on tendon regeneration using the super‐healer Murphy Roths Large (MRL/MpJ) mouse strain. We have previously shown that the scarless healing capacity of MRL/MpJ patellar tendons is associated with sexually dimorphic regulation of gene expression for pathways involved in fibrosis, cell migration, adhesion, and extracellular matrix (ECM) remodeling following an acute mid‐substance injury. Thus, we hypothesized that MRL/MpJ scarless tendon healing is mediated by sex‐specific and temporally distinct orchestration of cell–ECM interactions. Accordingly, the present study comparatively evaluated MRL/MpJ tendon cells on two‐dimensional (2D; glass) and scaffold platforms to examine cell behavior under biochemical and topographical cues associated with tendon homeostasis and healing. Female MRL/MpJ cells showed reduced 2D migration and spreading area accompanied by enhanced mechanosensing, ECM alignment, and fibronectin‐mediated cell proliferation compared to male MRL/MpJ cells. Interestingly, female MRL/MpJ cells cultured on isotropic scaffolds showed diminished cell–ECM organization compared to male MRL/MpJ cells. Lastly, MRL/MpJ cells elicited enhanced cytoskeletal elongation and alignment, ECM deposition and organization, and connexin 43‐mediated intercellular communication compared to male B6 cells, regardless of culture condition or sex. These results provide insight into the cellular features conserved within the MRL/MpJ phenotype and potential sex‐specific targets for the development of more equitable therapeutics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.