Despite widespread and persistent myths of a tongue map, all 5 prototypical taste qualities are sensed over the entire tongue. However, modern psychophysical data also suggest there may be more nuanced differences in suprathreshold intensity across oral loci, especially for bitterness. Here, we test whether bitter stimuli matched for whole-mouth intensity differ in perceived intensity across regions of the oral cavity in 2 experiments. Experiment 1 consisted of a whole-mouth sip and spit approach and Experiment 2 consisted of a spatial taste test using cotton swabs. In Experiment 1, participants (n = 63) rated overall intensity of 3 bitter solutions at 5 different loci (front, middle, back of tongue; roof of mouth; and lip). Temporal effects were explored using in-mouth and aftertaste ratings. In Experiment 2, participants (n = 48) rated the intensity of quinine and Tetralone solutions after solutions were painted on fungiform, circumvallate, and foliate papillae with a swab. After the spatial taste test, participants completed a questionnaire on self-reported beer intake. Analysis of variance results of both experiments show a significant locus by stimulus interaction, suggesting different bitterants were perceived differently across the various loci. This result was apparently driven by low-intensity ratings for Tetralone on the anterior tongue. Aftertaste ratings in Experiment 1 also revealed significant temporal effects: ratings on the anterior tongue decreased for all bitterants and ratings for quinine decreased at all loci. Reasons for these effects are not known but may suggest differential expression of bitter taste receptors or differences in bitter agonist-receptor binding affinity across tongue regions.
Prior work suggests humans can differentiate between bitter stimuli in water. Here, we describe three experiments that test whether beer consumers can discriminate between different bitterants in beer. In Experiment 1 (n = 51), stimuli were intensity matched; Experiments 2 and 3 were a difference from control (DFC)/check-all-that-apply (CATA) test (n = 62), and an affective test (n = 81). All used a commercial non-alcoholic beer spiked with Isolone (a hop extract), quinine sulfate dihydrate, and sucrose octaacetate (SOA). In Experiment 1, participants rated intensities on general labeled magnitude scales (gLMS), which were analyzed via ANOVA. In Experiment 2, participants rated how different samples were from a reference of Isolone on a 7-point DFC scale, and endorsed 13 attributes in a CATA task. DFC data were analyzed via ANOVA with Dunnett’s test to compare differences relative to a blind reference, and CATA data were analyzed via Cochran’s Q test. In Experiment 3, liking was assessed on labeled affective magnitude scales, and samples were also ranked. Liking was analyzed via ANOVA and rankings were analyzed with a Cochran–Mantel–Haenszel test. Experiment 1 confirmed that samples were isointense. In Experiment 2, despite being isointense, both quinine (p = 0.04) and SOA (p = 0.03) were different from Isolone, but no significant effects were found for CATA descriptors (all p values > 0.16). In Experiment 3, neither liking (p = 0.16) or ranking (p = 0.49) differed. Collectively, these data confirm that individuals can discriminate perceptually distinct bitter stimuli in beer, as shown previously in water, but these differences cannot be described semantically, and they do not seem to influence hedonic assessments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.