Pulmonary damage caused by chronic colonization of the cystic fibrosis (CF) lung by microbial communities is the proximal cause of respiratory failure. While there has been an effort to document the microbiome of the CF lung in pediatric and adult patients, little is known regarding the developing microflora in infants. We examined the respiratory and intestinal microbiota development in infants with CF from birth to 21 months. Distinct genera dominated in the gut compared to those in the respiratory tract, yet some bacteria overlapped, demonstrating a core microbiota dominated by Veillonella and Streptococcus. Bacterial diversity increased significantly over time, with evidence of more rapidly acquired diversity in the respiratory tract. There was a high degree of concordance between the bacteria that were increasing or decreasing over time in both compartments; in particular, a significant proportion (14/16 genera) increasing in the gut were also increasing in the respiratory tract. For 7 genera, gut colonization presages their appearance in the respiratory tract. Clustering analysis of respiratory samples indicated profiles of bacteria associated with breast-feeding, and for gut samples, introduction of solid foods even after adjustment for the time at which the sample was collected. Furthermore, changes in diet also result in altered respiratory microflora, suggesting a link between nutrition and development of microbial communities in the respiratory tract. Our findings suggest that nutritional factors and gut colonization patterns are determinants of the microbial development of respiratory tract microbiota in infants with CF and present opportunities for early intervention in CF with altered dietary or probiotic strategies.
Objective To examine patterns of microbial colonization of the respiratory and intestinal tracts in early life in infants with cystic fibrosis (CF) and their associations with breastfeeding and clinical outcomes. Study design A comprehensive, prospective longitudinal analysis of the upper respiratory and intestinal microbiota in a cohort of infants and young children with CF followed from birth was performed. Genus-level microbial community composition was characterized using 16S-targeted pyrosequencing, and relationships with exposures and outcomes were assessed using linear mixed-effects models, time-to-event analysis and principal components analysis. Results Sequencing of 120 samples from 13 subjects collected from birth to 34 months revealed relationships between breastfeeding, microbial diversity in the respiratory and intestinal tracts and the timing of onset of respiratory complications, including exacerbations and colonization with Pseudomonas aeruginosa. Fluctuations in the abundance of specific bacterial taxa preceeded clinical outcomes, including a significant decrease in bacteria of the genus Parabacteroides within the intestinal tract prior to the onset of chronic P. aeruginosa colonization. Specific assemblages of bacteria in intestinal samples, but not respiratory samples, were associated with CF exacerbation in early life, indicating that the intestinal microbiome may play a role in lung health. Conclusion Our findings relating breastfeeding to respiratory outcomes, gut diversity to prolonged periods of health, and specific bacterial communities in the gut prior to respiratory complications in CF highlight a connection between the intestinal microbiome and health and point to potential opportunities for antibiotic or probiotic interventions. Further studies in larger cohorts validating these findings are needed.
BackgroundThe impact of degree of prematurity at birth on premature infant gut microbiota has not been extensively studied in comparison to term infants in large cohorts.MethodsTo determine the effect of gestational age at birth and postnatal exposures on gut bacterial colonization in infants, we analyzed 65 stool samples from 17 premature infants in the neonatal intensive care unit, as well as 13 samples from 13 mostly moderate-to-late premature infants and 189 samples from 176 term infants in the New Hampshire Birth Cohort Study. Gut colonization patterns were determined with 16S rDNA microbiome profiling.ResultsGut bacterial alpha-diversity differed between premature and term infants at 6 weeks of age, after adjusting for exposures (p=0.027). Alpha-diversity varied between extremely premature (<28 weeks gestation) and very premature infants (≥28 but <32 weeks, p=0.011), as well as between extremely and moderate-to-late premature infants (≥32 and <37 weeks, p=0.004). Newborn antibiotic use among premature infants was associated with lower Bifidobacterium and Bacteroides abundance (p=0.015 and p=0.041).ConclusionGestational age at birth and early antibiotic exposure have significant effects on the premature infant gut microbiota.
Objective To test the hypothesis that maternal complications significantly affect gut colonization patterns in very low birth weight infants. Methods 49 serial stool samples were obtained weekly from 9 extremely premature infants enrolled in a prospective longitudinal study. Sequencing of the bacterial 16S rRNA gene from stool samples was performed to approximate the intestinal microbiome. Linear mixed effects models were used to evaluate relationships between perinatal complications and intestinal microbiome development. Results Subjects with prenatal exposure to a non-sterile intrauterine environment, i.e. PPPROM and chorioamnionitis exposure, were found to have a relatively higher abundance of potentially pathogenic bacteria in the stool across all time points compared to subjects without those exposures, irrespective of exposure to postnatal antibiotics. Compared with those delivered by Caesarean section, vaginally delivered subjects were found to have significantly lower diversity of stool microbiota across all time points, with lower abundance of many genera, most in the family Enterobacteriaceae. Conclusions We identified persistently increased potential pathogen abundance in the developing stool microbiota of subjects exposed to a non-sterile uterine environment. Maternal complications appear to significantly influence the diversity and bacterial composition of the stool microbiota of premature infants, with findings persisting over time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.