The effects of menstrual cycle phase (early follicular vs. midluteal) and menstrual status (eumenorrhea vs. amenorrhea) on plasma arginine vasopressin (AVP), renin activity (PRA), and aldosterone (ALDO) were studied before and after 40 min of submaximal running (80% maximal O2 uptake). Eumenorrheic runners were studied in the early follicular and midluteal phases determined by urinary luteinizing hormone and progesterone and plasma estradiol and progesterone assays; amenorrheic runners were studied once. Menstrual phase was associated with no significant differences in preexercise plasma AVP or PRA, but ALDO levels were significantly higher during the midluteal phase than the early follicular phase. Plasma AVP and PRA were significantly elevated at 4 min after the 40-min run in the eumenorrheic runners during both menstrual phases and returned to preexercise levels by 40 min after exercise. Plasma ALDO responses at 4 and 40 min after exercise were higher in the midluteal phase than the early follicular phase. Menstrual status was associated with no significant differences in preexercise AVP or PRA; however, ALDO levels were significantly higher in the amenorrheic runners. After exercise, responses in the amenorrheic runners were comparable with the eumenorrheic runners during the early follicular phase. Thus, submaximal exercise elicits significant increases in plasma AVP and PRA independent of menstrual phase and status. However, plasma ALDO is significantly elevated during the midluteal phase, exercise results in a greater response during this menstrual phase, and amenorrheic runners have elevated resting levels of ALDO.
Adrenocorticotropic hormone (ACTH), cortisol, and prolactin responses following maximal and submaximal (40 min at 80% maximal O2 consumption) running were studied in eumenorrheic (ER; n = 8, 29.0 +/- 1.5 yr) and amenorrheic (AR; n = 8, 24.5 +/- 2.0 yr) runners. ER were studied in the early follicular and midluteal phases of the menstrual cycle. Physical, training, and gynecological characteristics were similar, and cardiorespiratory and metabolic responses to the exercises were indistinguishable in the groups. ACTH, cortisol, and prolactin data from the follicular luteal phases in ER were combined for comparison to AR, because no differences were noted between the menstrual phases at rest. Similar preexercise ACTH levels and responses following exercise occurred in both groups, but preexercise cortisol levels were elevated (ER = 293.1 +/- 46.3, AR = 479.6 +/- 42.4 nmol/l) and cortisol responses blunted in AR. Adrenal sensitivity was blunted in AR compared with ER after submaximal (ER = 121.9 +/- 17.4, AR = 51.7 +/- 13.6) and maximal exercise (ER = 27.9 +/- 9.2, AR = 12.1 +/- 3.8). Preexercise prolactin levels were reduced (ER = 16.4 +/- 2.7, AR = 10 +/- 2.3 micrograms/l), and prolactin responses to maximal exercises were blunted in AR, despite high lactate levels (11.4 +/- 0.4 mmol/l). We conclude that 1) control for menstrual phase in ER is important in studies of prolactin responses following exercise but not in studies of ACTH and cortisol responses following exercise, 2) cortisol responses following submaximal and maximal exercise in AR are blunted at the adrenal level, 3) prolactin responses following submaximal and maximal exercise are also blunted in AR, and 4) prolactin responses following exercise may be mediated by adrenal activation.
To study the effects of exercise intensity and duration on excess postexercise oxygen consumption (EPOC), 8 men [age = 27.6 (SD 3.8) years, VO2max = 46.1 (SD 8.5) ml min-1 kg-1] performed four randomly assigned cycle-ergometer tests (20 min at 60% VO2max, 40 min at 60% VO2max, 20 min at 70% VO2max, and 40 min at 70% VO2max). O2 uptake, heart rate and rectal temperature were measured before, during, and for 1 h following the exercise tests. Blood for plasma lactate measurements was obtained via cannulae before, and at selected times, during and following exercise. VO2 rapidly declined to preexercise levels following each of the four testing sessions, and there were no differences in EPOC between the sessions. Blood lactate and rectal temperature increased (P < 0.05) with exercise, but had returned to preexercise levels by 40 min of recovery. The results indicate that VO2 returned to resting levels within 40 min after the end of exercise, regardless of the intensity (60% and 70% VO2max) or duration (20 min and 40 min) of the exercise, in men with a moderate aerobic fitness level.
Although iron is one of the most commonly used nutritional supplements, this study concluded that iron supplementation did not alter the iron status of the women athletes studied.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.