Background: Antenatal anemia is a risk factor for adverse maternal and fetal outcomes and is prevalent in sub-Saharan Africa. Less than half of antenatal anemia is considered responsive to iron; identifying women in need of iron may help target interventions. Iron absorption is governed by the iron-regulatory hormone hepcidin.Objective: We sought to characterize changes in hepcidin and its associations with indexes of iron stores, erythropoiesis, and inflammation at weeks 14, 20, and 30 of gestation and to assess hepcidin’s diagnostic potential as an index of iron deficiency.Methods: We measured hemoglobin and serum hepcidin, ferritin, soluble transferrin receptor (sTfR), and C-reactive protein (CRP) at 14, 20, and 30 wk of gestation in a cohort of 395 Gambian women recruited to a randomized controlled trial. Associations with hepcidin were measured by using linear regression, and hepcidin’s diagnostic test accuracy [area under the receiver operating characteristic curve (AUCROC), sensitivity, specificity, cutoffs] for iron deficiency at each time point was analyzed.Results: The prevalence of anemia increased from 34.6% at 14 wk of gestation to 50.0% at 20 wk. Hepcidin concentrations declined between study enrollment and 20 wk, whereas ferritin declined between 20 and 30 wk of gestation. The variations in hepcidin explained by ferritin, sTfR, and CRP declined over pregnancy. The AUCROC values for hepcidin to detect iron deficiency (defined as ferritin <15 μg/L) were 0.86, 0.83, and 0.84 at 14, 20, and 30 wk, respectively. Hepcidin was superior to hemoglobin and sTfR as an indicator of iron deficiency.Conclusions: In Gambian pregnant women, hepcidin appears to be a useful diagnostic test for iron deficiency and may enable the identification of cases for whom iron would be beneficial. Hepcidin suppression in the second trimester suggests a window for optimal timing for antenatal iron interventions. Hemoglobin does not effectively identify iron deficiency in pregnancy. This trial was registered at www.isrctn.com as ISRCTN49285450.
Detailed phenotyping is required to deepen our understanding of the biological mechanisms behind genetic associations. In addition, the impact of potentially modifiable risk factors on disease requires analytical frameworks that allow causal inference. Here, we discuss the characteristics of Recall-by-Genotype (RbG) as a study design aimed at addressing both these needs. We describe two broad scenarios for the application of RbG: studies using single variants and those using multiple variants. We consider the efficacy and practicality of the RbG approach, provide a catalogue of UK-based resources for such studies and present an online RbG study planner.
Background The development of a fast and accurate, non-sputum-based point-of-care triage test for tuberculosis (TB) would have a major impact on combating the TB burden worldwide. A new fingerstick blood test has been developed by Cepheid (the Xpert-MTB-Host Response (HR)-Prototype), which generates a ‘TB score’ based on mRNA expression of 3 genes. Here we describe the first prospective findings of the MTB-HR prototype. Methods Fingerstick blood from adults presenting with symptoms compatible with TB in South Africa, The Gambia, Uganda and Vietnam was analysed using the Cepheid GeneXpert MTB-HR prototype. Accuracy of the Xpert MTB-HR cartridge was determined in relation to GeneXpert Ultra results and a composite microbiological score (GeneXpert Ultra and liquid culture) with patients classified as having TB or other respiratory diseases (ORD). Results When data from all sites (n=75 TB, 120 ORD) were analysed, the TB score discriminated between TB and ORD with an AUC of 0·94 (CI, 0·91-0·97), sensitivity of 87% (CI, 77-93%) and specificity of 94% (88-97%). When sensitivity was set at 90% for a triage test, specificity was 86% (CI, 75-97%). These results were not influenced by HIV status or geographical location. When evaluated against a composite microbiological score (n=80 TB, 111 ORD), the TB score was able to discriminate between TB and ORD with an AUC of 0·88 (CI, 0·83-0·94), 80% sensitivity (CI, 76-85%) and 94% specificity (CI, 91-96%). Conclusions Our interim data indicate the Cepheid MTB-HR cartridge reaches the minimal target product profile for a point of care triage test for TB using fingerstick blood, regardless of geographic area or HIV infection status.
Iron deficiency and iron deficiency anemia are highly prevalent in low-income countries, especially among young children. Hepcidin is the major regulator of systemic iron homeostasis. It controls dietary iron absorption, dictates whether absorbed iron is made available in circulation for erythropoiesis and other iron-demanding processes, and predicts response to oral iron supplementation. Understanding how hepcidin is itself regulated is therefore important, especially in young children. We investigated how changes in iron-related parameters, inflammation and infection status, seasonality, and growth influenced plasma hepcidin and ferritin concentrations during infancy using longitudinal data from two birth cohorts of infants in rural Gambia (n=114 and n=193). This setting is characterized by extreme seasonality, prevalent childhood anemia, undernutrition, and frequent infection. Plasma was collected from infants at birth and at regular intervals, up to 12 months of age. Hepcidin, ferritin and plasma iron concentrations declined markedly during infancy, with reciprocal increases in soluble transferrin receptor and transferrin concentrations, indicating declining iron stores and increasing tissue iron demand. In cross-sectional analyses at 5 and 12 months of age, we identified expected relationships of hepcidin with iron and inflammatory markers, but also observed significant negative associations between hepcidin and antecedent weight gain. Correspondingly, longitudinal fixed effects modeling demonstrated weight gain to be the most notable dynamic predictor of decreasing hepcidin and ferritin through infancy across both cohorts. Infants who grow rapidly in this setting are at particular risk of depletion of iron stores, but since hepcidin concentrations decrease with weight gain, they may also be the most responsive to oral iron interventions.
Septicemia is a leading cause of death among neonates in low-income settings, a situation that is deteriorating due to high levels of antimicrobial resistance. Novel interventions are urgently needed. Iron stimulates the growth of most bacteria and hypoferremia induced by the acute phase response is a key element of innate immunity. Cord blood, which has high levels of hemoglobin, iron and transferrin saturation, has hitherto been used as a proxy for the iron status of neonates. We investigated hepcidin-mediated redistribution of iron in the immediate post-natal period and tested the effect of the observed hypoferremia on the growth of pathogens frequently associated with neonatal sepsis. Healthy, vaginally delivered neonates were enrolled in a cohort study at a single center in rural Gambia (N = 120). Cord blood and two further blood samples up to 96 hours of age were analyzed for markers of iron metabolism. Samples pooled by transferrin saturation were used to conduct ex-vivo growth assays with Staphylococcus aureus, Streptococcus agalactiae, Escherichia coli and Klebsiella pneumonia. A profound reduction in transferrin saturation occurred within the first 12 h of life, from high mean levels in cord blood (47.6% (95% CI 43.7–51.5%)) to levels at the lower end of the normal reference range by 24 h of age (24.4% (21.2–27.6%)). These levels remained suppressed to 48 h of age with some recovery by 96 h. Reductions in serum iron were associated with high hepcidin and IL-6 levels. Ex-vivo growth of all sentinel pathogens was strongly associated with serum transferrin saturation. These results suggest the possibility that the hypoferremia could be augmented (e.g. by mini-hepcidins) as a novel therapeutic option that would not be vulnerable to antimicrobial resistance. Trial registration: The original trial in which this study was nested is registered at ISRCTN, number 93854442.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.