One of the fundamental problems in supramolecular chemistry, as well as in material sciences, is how to control the self-assembly of polymers on the nanometer scale and how to spontaneously organize them towards the macroscopic scale. To overcome this problem, inspired by the self-assembly systems in nature, which feature the dynamically controlled self-assembly of biopolymers, we have previously proposed a self-assembly system that uses a dynamic liquid/liquid interface with dimensions in the micrometer regime, thereby allowing polymers to self-assemble under precisely controlled nonequilibrium conditions. Herein, we further extend this system to the creation of hierarchical self-assembled architectures of polysaccharides. A natural polysaccharide, β-1,3-glucan (SPG), and water were injected into opposite "legs" of microfluidic devices that had a Y-shape junction, so that two solvents would gradually mix in the down stem, thereby causing SPG to spontaneously self-assemble along the flow in a head-to-tail fashion, mainly through hydrophobic interactions. In the initial stage, several SPG nanofibers would self-assemble at the Y-junction owing to the shearing force, thereby creating oligomers with a three-way junction point. This unique structure, which could not be created through conventional mixing procedures, has a divergent self-assembly capability. The dynamic flow allows the oligomers to interact continuously with SPG nanofibers that are fed into the Y-junction, thus amplifying the nanostructure along the flow to form SPG networks. Consequently, we were able to create stable, centimeter-length macroscopic polysaccharide strands under the selected flow conditions, which implies that SPG nanofibers were assembled hierarchically in a supramolecular fashion in the dynamic flow. Microscopic observations, including SEM and AFM analysis, revealed the existence of clear hierarchical structures inside the obtained strand. The network structures self-assembled to form sub-micrometer-sized fibers. The long fibers further entangled with each other to give stable micrometer-sized fibers, which finally assembled to form the macroscopic strands, in which the final stabilities in the macroscopic regime were governed by that of the network structures in the nanometer regime. Thus, we have exploited this new supramolecular system to create hierarchical polymeric architectures under precisely controlled flow conditions, by combining the conventional supramolecular strategy with microfluidic science.
A dynamic oil–water interface generated in a double-Y-shaped microfluidic device allowed amphiphilic molecules to self-assemble spontaneously for a set period of time, leading to the creation of discrete supramolecular coordination polymers. After elution from the device, these 1-D structures gradually dissociated into their monomer units, regenerating the initial state. The self-assembled structures were maintained only under the flow conditions in the device.
We have demonstrated that the creation of hierarchical polysaccharide architectures can be achieved by using a fluidic liquid–liquid interface as a dynamic template for the supramolecular spinning of polysaccharide nanofibers. The individual polysaccharide nanofibers were entangled to form extended network structures in the macroscopic strand, which is never produced through conventional renaturing of polysaccharide. The wrapping of a synthetic functional polymer by the polysaccharide also proceeded on the fluidic liquid interface, leading to the creation of polysaccharide strand having unique functionalities such as conductivity or fluorescence arising from the entrapped polymer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.