Objective
A growing body of evidence has put forward clinical risk factors associated with patients with mood disorders that attempt suicide. However, what is not known is how to integrate clinical variables into a clinically useful tool in order to estimate the probability of an individual patient attempting suicide.
Method
A total of 144 patients with mood disorders were included. Clinical variables associated with suicide attempts among patients with mood disorders and demographic variables were used to ‘train’ a machine learning algorithm. The resulting algorithm was utilized in identifying novel or ‘unseen’ individual subjects as either suicide attempters or non-attempters. Three machine learning algorithms were implemented and evaluated.
Results
All algorithms distinguished individual suicide attempters from non-attempters with prediction accuracy ranging between 65%-72% (p<0.05). In particular, the relevance vector machine (RVM) algorithm correctly predicted 103 out of 144 subjects translating into 72% accuracy (72.1% sensitivity and 71.3% specificity) and an area under the curve of 0.77 (p<0.0001). The most relevant predictor variables in distinguishing attempters from non-attempters included previous hospitalizations for depression, a history of psychosis, cocaine dependence and post-traumatic stress disorder (PTSD) comorbidity.
Conclusion
Risk for suicide attempt among patients with mood disorders can be estimated at an individual subject level by incorporating both demographic and clinical variables. Future studies should examine the performance of this model in other populations and its subsequent utility in facilitating selection of interventions to prevent suicide.
Cortical gyrification of the brain represents the folding characteristic of the cerebral cortex. How the brain cortical gyrification changes from childhood to old age in healthy human subjects is still unclear. Additionally, studies have shown regional gyrification alterations in patients with major psychiatric disorders, such as major depressive disorder (MDD), bipolar disorder (BD), and schizophrenia (SCZ). However, whether the lifespan trajectory of gyrification over the brain is altered in patients diagnosed with major psychiatric disorders is still unknown. In this study, we investigated the trajectories of gyrification in three independent cohorts based on structural brain images of 881 subjects from age 4 to 83. We discovered that the trajectory of gyrification during normal development and aging was not linear and could be modeled with a logarithmic function. We also found that the gyrification trajectories of patients with MDD, BD and SCZ were deviated from the healthy one during adulthood, indicating altered aging in the brain of these patients.
IMPORTANCE Large-scale neuroimaging studies have revealed group differences in cortical thickness across many psychiatric disorders. The underlying neurobiology behind these differences is not well understood.OBJECTIVE To determine neurobiologic correlates of group differences in cortical thickness between cases and controls in 6 disorders: attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorder (ASD), bipolar disorder (BD), major depressive disorder (MDD), obsessive-compulsive disorder (OCD), and schizophrenia (SCZ).
DESIGN, SETTING, AND PARTICIPANTSProfiles of group differences in cortical thickness between cases and controls were generated using T1-weighted magnetic resonance images. Similarity between interregional profiles of cell-specific gene expression and those in the group differences in cortical thickness were investigated in each disorder. Next, principal component analysis was used to reveal a shared profile of group difference in thickness across the disorders. Gene coexpression, clustering, and enrichment for genes associated with these disorders were conducted. Data analysis was conducted between June and December 2019. The analysis included 145 cohorts across 6 psychiatric disorders drawn from the ENIGMA consortium. The number of cases and controls in each of the 6 disorders were as follows:
Background
Neuroanatomical abnormalities in Bipolar disorder (BD) have previously been reported. However, the utility of these abnormalities in distinguishing individual BD patients from Healthy controls and stratify patients based on overall illness burden has not been investigated in a large cohort.
Methods
In this study, we examined whether structural neuroimaging scans coupled with a machine learning algorithm are able to distinguish individual BD patients from Healthy controls in a large cohort of 256 subjects. Additionally, we investigated the relationship between machine learning predicted probability scores and subjects’ clinical characteristics such as illness duration and clinical stages. Neuroimaging scans were acquired from 128 BD patients and 128 Healthy controls. Gray and white matter density maps were obtained and used to ‘train’ a relevance vector machine (RVM) learning algorithm which was used to distinguish individual patients from Healthy controls.
Results
The RVM algorithm distinguished patients from Healthy controls with 70.3 % accuracy (74.2 % specificity, 66.4 % sensitivity, chi-square p<0.005) using white matter density data and 64.9 % accuracy (71.1 % specificity, 58.6 % sensitivity, chi-square p<0.005) with gray matter density. Multiple brain regions – largely covering the fronto – limbic system were identified as ‘most relevant’ in distinguishing both groups. Patients identified by the algorithm with high certainty (a high probability score) – belonged to a subgroup with more than ten total lifetime manic episodes including hospitalizations (late stage).
Conclusions
These results indicate the presence of widespread structural brain abnormalities in BD which are associated with higher illness burden – which points to neuroprogression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.