Mammals manifest circadian behaviour timed by an endogenous clock in the hypothalamic suprachiasmatic nucleus (SCN). Considerable progress has been made in identifying the molecular basis of the circadian clock, but the mechanisms by which it is translated into cyclic firing activity, high during the day and low at night, are still poorly understood. GABA (gamma-aminobutyric acid), a common inhibitory neurotransmitter in the central nervous system, is particularly densely distributed within the SCN, where it is located in the majority of neuronal somata and synaptic terminals. Using an in vitro brain-slice technique, we have now studied the effect of bath-applied GABA on adult SCN neurons at various times of the day. We find that GABA acts as an inhibitory neurotransmitter at night, decreasing the firing frequency; but during the day GABA acts as an excitatory neurotransmitter, increasing the firing frequency. We show that this dual effect, which is mediated by GABA(A) receptors, may be attributed to an oscillation in intracellular chloride concentration. A likely explanation is that the amplitude of the oscillation in firing rate, displayed by individual neurons, is amplified by the dual effect of GABA in the SCN's GABAergic network.
With a view to identifying the neurotransmitter content of retinal terminals within the mouse suprachiasmatic nucleus, a highly specific antiserum to glutaraldehyde-coupled glutamate was used in a postembedding immunogold procedure at the ultrastructural level. Retinal terminals were identified by cholera toxin--horseradish peroxidase transported anterogradely from the retina and reacted with tetramethyl benzidine/tungstate/H2O2, or by their characteristically pale and distended mitochondria with irregular cristae. Controls included model ultrathin sections containing high concentrations of various amino acids. Alternate serial sections were labelled with anti-glutamate and anti-gamma-aminobutyric acid (GABA). Data were analysed by computer-assisted image analysis. Density of glutamate labelling (gold particles per micron2) on whole retinal terminals was > 3 times higher than that on postsynaptic dendrites, and > 5 times higher than that on miscellaneous non-retinal non-glutamatergic terminals in the suprachiasmatic nucleus. The overall density of gold particles over retinal terminals was approximately 3 times higher than that over GABAergic terminals, in which glutamate-like immunoreactivity was mainly mitochondrial. Labelling of vesicles in retinal terminals was almost 5 times greater than the apparent labelling of vesicles in GABAergic terminals, underscoring the location of transmitter glutamate within synaptic vesicles in retinal terminals. In the retino-recipient region of the suprachiasmatic nucleus there was also a small population of non-retinal glutamatergic terminals. Their overall immunoreactivity was similar to or exceeded that of retinal terminals, but morphological features clearly distinguished between these two types of glutamate-containing terminals. The present results indicate that the vast majority of retinal terminals may use glutamate as a transmitter, in keeping with electrophysiological and neuropharmacological data from other sources. The possibility of cotransmitters within retinal terminals, suggested by the presence of dense-core vesicles among the glutamate-containing synaptic vesicles, has still to be addressed.
GABA (gamma-amino-butyric acid) is the predominant neurotransmitter in the mammalian suprachiasmatic nucleus (SCN), with a central role in circadian time-keeping. We therefore undertook an ultrastructural analysis of the GABA-containing innervation in the SCN of mice and rats using immunoperoxidase and immunogold procedures. GABA-immunoreactive (GABA-ir) neurons were identified by use of anti-GABA and anti-GAD (glutamic acid decarboxylase) antisera. The relationship between GABA-ir elements and the most prominent peptidergic neurons in the SCN, containing vasopressin-neurophysin (VP-NP) or vasoactive intestinal polypeptide (VIP), was also studied. Within any given field in the SCN, approximately 40-70 % of the neuronal profiles were GABA-ir. In GABA-ir somata, immunogold particles were prominent over mitochondria, sparse over cytoplasm, and scattered as aggregates over nucleoplasm. In axonal boutons, gold particles were concentrated over electron-lucent synaptic vesicles (diameter 40-60 nm) and mitochondria, and in some instances over dense-cored vesicles (DCVs, diameter 90-110 nm). GABA-ir boutons formed either symmetric or asymmetric synaptic contacts with somata, dendritic shafts and spines, and occasionally with other terminals (axo-axonic). Homologous or autaptic connections (GABA on GABA, or GAD on GAD) were common. Although GABA appeared to predominate in most neuronal profiles, colocalisation of GABA within neurons that were predominantly neuropeptide-containing was also evident. About 66 % of the VIP-containing boutons and 32 % of the vasopressinergic boutons contained GABA. The dense and complex GABAergic network that pervades the SCN is therefore comprised of multiple neuronal phenotypes containing GABA, including a wide variety of axonal boutons that impinge on heterologous and homologous postsynaptic sites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.