These results have important implications for the use of subchondral drilling for marrow stimulation, as they support the use of small-diameter bone-cutting devices.
Associations between topographic location and articular cartilage repair in preclinical animal models are unknown. Based on clinical investigations, we hypothesized that lesions in the ovine femoral condyle repair better than in the trochlea. Full-thickness chondral and osteochondral defects were simultaneously established in the weightbearing area of the medial femoral condyle and the lateral trochlear facet in sheep, with chondral defects subjected to subchondral drilling. After 6 months in vivo, cartilage repair and osteoarthritis development was evaluated by macroscopic, histological, immunohistochemical, and biochemical analyses. Macroscopic and histological articular cartilage repair and type-II collagen immunoreactivity were better in the femoral trochlea, regardless of the defect type. Location-independently, osteochondral defects induced more osteoarthritic degeneration of the adjacent cartilage than drilled chondral lesions. DNA and proteoglycan contents of chondral defects were higher in the condyle, reflecting physiological topographical differences. The results indicate that topographic location dictates the structural patterns and biochemical composition of the repair tissue in sheep. These findings suggest that repair of cartilage defects at different anatomical sites of the ovine stifle joint needs to be assessed independently and that the sheep trochlea exhibits cartilage repair patterns reflective of the human medial femoral condyle. ß
This study quantified changes in the DNA content and extracellular matrix composition of both the cartilaginous repair tissue and the adjacent cartilage in a large animal model of a chondral defect treated by subchondral drilling. Content of DNA, proteoglycans, and Type II and Type I collagen, as well as their different ratios were assessed at 6 months in vivo after treatment of full-thickness cartilage defects in the femoral trochlea of adult sheep with six subchondral drill holes, each of either 1.0 mm or 1.8 mm in diameter by biochemical analyses of the repair tissue and the adjacent cartilage and compared with the original cartilage. Only subchondral drilling which were 1.0 mm in diameter significantly increased both DNA and proteoglycan content of the repair tissue compared to the original cartilage. DNA content correlated with the proteoglycan and Type II collagen content within the repair tissue. Significantly higher amounts of Type I collagen within the repair tissue and significantly increased DNA, proteoglycan, and Type I collagen content in the adjacent cartilage were identified. These translational data support the use of small-diameter bone-cutting devices for marrow stimulation. Signs of early degeneration were present within the cartilaginous repair tissue and the adjacent cartilage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.