Objective: The evolution of antimicrobial resistance is a universal obstacle that necessities the innovation of more effective and safe antimicrobial alternatives with synergistic properties. The purpose of this study was to investigate the possible improvement of cephalexin antimicrobial treatments by loading into chitosan-based nanoparticles, then evaluate their antibacterial and antibiofilm activities as well as determination of its cytotoxicity.
Methods: Chitosan nanoparticles (CSNPs) were prepared by ionic gelation method. Parameters were studied to optimize the particle size of CSNPs including pH, stirring rate, homogenization and ultra-sonication time. Size was measured by transmission electron microscope (TEM) and Zeta sizer, morphology seen by scanning electron microscope (SEM). Entrapment efficiency, drug loading and drug content were calculated. Stability of both plain and loaded chitosan Nano-carriers, Drug release and Kinetics also compatibilities were studied. Antimicrobial activity of CSNPs and cephalexin loaded CSNPs were evaluated against 4 Gram-positive and 4 Gram-negative standard and clinical isolates by microdilution method, also assessment of antibiofilm activity of both formulas was investigated against two biofilm producers clinical isolates by tube assay in addition to determination of their cytotoxicity by MTT(3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay.
Results: Chitosan nanoparticles and its loaded antibiotics proved compatible combination with small Zeta size, suitable Zeta potential, maximum EE% and drug-loading capacity, sustained controlled release properties followed diffusion kinetic model and six month stability studies. Cephalexin loaded CSNPs showed better antimicrobial activity than plain CSNPs. Synergistic effects were found against S. aureus (ATCC 25923), B. subtilis (ATCC 9372), S. epidermidis, E. faecalis, P. aeruginosa (ATCC 29853) in addition to two carbapenem resistant isolates k. pneumoniae and E. coli. Also cephalexin loaded CSNPs exhibited antibiofilm activity against E. faecalis clinical isolate. Even though, cephalexin loaded CSNPs exhibited significant antibacterial activity, it showed less toxicity against mammalian cells, it had IC50 equal to 231.893 and did not exhibit any cytotoxicity against the WI-38 fibroblast cells at concentration 23.4 µg/ml.
Conclusion: Cephalexin loaded CSNPs possessed good stability and sustained release effect in addition to its antimicrobial, antibiofilm activities and reduced cytotoxicity.
Objective: In an attempt to optimize the anti-Alzheimer effect, rivastigmine-loaded chitosan nanoparticles were developed in order to target of brain through skin permeation.
Methods: Rivastigmine-loaded chitosan-tripolyphosphate nanoparticles were prepared by modified ionic gelation method using tween 80 surfactants in different batches with variable chitosan/cross-linker ratios, desirability factors were applied to choose the optimal Nanocarrier and (F15) was selected. Different rivastigmine concentrations were loaded and the highest encapsulation efficiency formulae chosen for further study and evaluated by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and differential scanning calorimetric (DSC). Further, drug loading, Ex-vivo skin permeation of Nano-gel, and kinetic studies were carried out in addition to stability along three months under different temperature.
Results: Particle size and polydispersity index showed average 291.6±7.70 to 490.6±7.42 d. nm. and 0.333±0.04 to 0.570±0.023 respectively. The nanoparticles were spherical in shape. Drug concentrations 4% w/w showed the highest drug entrapment efficiency (89.80%) and drug loading (40.81). Ex vivo studies shows that gel formulae of rivastigmine loaded chitosan nanoparticles was not irritant to rat skin had better skin permeation than chitosan nanoparticles aqueous dispersion also capable of releasing the drug in a sustained manner, and follow kinetic diffusion model. Optimum formula F15 was physical and chemical stable.
Conclusion: The experimental results showed the suitability of chitosan nanoparticles coated with a surfactant as a potential carrier for permeation through skin and brain, providing sustained delivery of rivastigmine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.