This paper presents a fast and simple method for human action recognition. The proposed technique relies on detecting interest points using SIFT (scale invariant feature transform) from each frame of the video. A fine-tuning step is used here to limit the number of interesting points according to the amount of details. Then the popular approach Bag of Video Words is applied with a new normalization technique. This normalization technique remarkably improves the results. Finally a multi class linear Support Vector Machine (SVM) is utilized for classification. Experiments were conducted on the KTH and Weizmann datasets. The results demonstrate that our approach outperforms most existing methods, achieving accuracy of 97.89% for KTH and 96.66% for Weizmann.
Video abstraction is a basic step for intelligent access to video and multimedia databases which facilitates content-based video indexing, retrieving and browsing. This paper presents a new video abstraction scheme. The proposed method relies on two stages. First, video is divided into short segments. Second, keyframes in each segment are selected using particle swarm optimisation. A group of experiments show that the proposed technique is promising in regards to selecting the most significant keyframes despite a sustainment in overhead processing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.