Severe acute respiratory syndrome coronavirus (SARS-CoV-2) also named COVID-19, aggressively spread all over the world in just a few months. Since then, it has multiple variants that are far more contagious than its parent. Rapid and accurate diagnosis of COVID-19 and its variants are crucial for its treatment, analysis of lungs damage and quarantine management. Deep learning-based solution for efficient and accurate diagnosis to COVID-19 and its variants using Chest X-rays, and computed tomography images could help to counter its outbreak. This work presents a novel depth-wise residual network with an atrous mechanism for accurate segmentation and lesion location of COVID-19 affected areas using volumetric CT images. The proposed framework consists of 3D depth-wise and 3D residual squeeze and excitation block in cascaded and parallel to capture uniformly multi-scale context (low-level detailed, mid-level comprehensive and high-level rich semantic features). The squeeze and excitation block adaptively recalibrates channel-wise feature responses by explicitly modeling inter-dependencies between various channels. We further have introduced an atrous mechanism with a different atrous rate as the bottom layer. Extensive experiments on benchmark CT datasets showed considerable gain (5%) for accurate segmentation and lesion location of COVID-19 affected areas.
COVID-19 has severely disrupted every aspect of society and left negative impact on our life. Resisting the temptation in engaging face-to-face social connection is not as easy as we imagine. Breaking ties within social circle makes us lonely and isolated, that in turns increase the likelihood of depression related disease and even can leads to death by increasing the chance of heart disease. Not only adults, children's are equally impacted where the contribution of emotional competence to social competence has long term implications. Early identification skill for facial behaviour emotions, deficits, and expression may help to prevent the low social functioning. Deficits in young children's ability to differentiate human emotions can leads to social functioning impairment. However, the existing work focus on adult emotions recognition mostly and ignores emotion recognition in children. By considering the working of pyramidal cells in the cerebral cortex, in this paper, we present progressive lightweight shallow learning for the classification by efficiently utilizing the skip-connection for spontaneous facial behaviour recognition in children. Unlike earlier deep neural networks, we limit the alternative path for the gradient at the earlier part of the network by increase gradually with the depth of the network. Progressive ShallowNet is not only able to explore more feature space but also resolve the over-fitting issue for smaller data, due to limiting the residual path locally, making the network vulnerable to perturbations. We have conducted extensive experiments on on benchmark facial behaviour analysis in children that showed significant performance gain comparatively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.