The purpose of this study was to investigate the feasibility of simultaneous optimization and removal of dyes, Malachite green (MG), Rhodamine B (RhB) and Cresol Red (CR) from aqueous solutions by using Sistan sand as an extremely low cost adsorbent. Factors affecting adsorption of the analytes on the sorbent were investigated experimentally and by using Taguchi and Plackett–Burman experimental design methods. In most cases, the results of these two models were in agreement with each other and with experimental data obtained. Taguchi method was capable to predict results with accuracies better than 97.89%, 95.43%, and 97.79% for MG, RhB, and CR, respectively. Under the optimum conditions, the sorbent could remove simultaneously more than 83% of the dyes with the amount of adsorbed dyes of 0.132, 0.109, and 0.120 mg g−1 for MG, RhB and CR on sand, respectively. Kinetic studies showed that pseudo second order is the best model of adsorption for all analytes. Thermodynamic parameters revealed that this process is spontaneous and endothermic.
Electronic supplementary materialThe online version of this article (10.1186/s13065-018-0486-2) contains supplementary material, which is available to authorized users.
Stir bar sorptive extraction (SBSE) has been developed in 1999 to efficiently extract and preconcentrate volatile compounds, and many applications have been found after that. This technique conforms to the principles of green chemistry. Here, we used an autosampler with an online thermal desorption unit connected to CGC-MS to analyze pesticides. This study describes the development of a highly sensitive extraction method based on SBSE for simultaneous determination of ultra-trace amounts of four pesticides λ-cyhalothrin, α-cypermethrin, tefluthrin, and dimefluthrin in environmental water samples. This method was compared to the standard liquid–liquid extraction. In this study, a totally solventless SBSE was applied to river and tap water samples for the extraction and preconcentration of four pesticides. PDMS-coated SBSEs of 10 mm × 1 mm thickness were used for this purpose, and SBSEs were directly placed into a large-volume injector of a CGC-MS for thermal desorption of the analytes. In all extractions, deltamethrin was used as an internal standard. This method showed linearity in the range of 1.0–200.0 ng L−1 for cyhalothrin, tefluthrin, and dimefluthrin and 10.0–800 ng L−1 for cypermethrin. Preconcentration factors of 179, 7, 162, and 166 were obtained with very low limits of detection of 0.32, 3.41, 0.36m and 0.69 ng L−1 for cyhalothrin, cypermethrin, tefluthrinm and dimefluthrin, respectively. These detection limits are thousands of times lower than that of the standard method of liquid–liquid extraction. Reproducibility of the method, based on the relative standard deviation, was better than 7.5% and recoveries for spiked tap and river water samples was within the range of 87.83–114.45%. The application of PDMS-coated SBSE coupled with CGC-MS equipped with a large volume injector thermal desorption unit can be used for ultra-trace analysis of environmental water samples. Solventless SBSE offers several advantages over conventional traditional liquid–liquid extraction such as being very fast and economical and provides better extraction without requiring any solvents; so it can be considered as a green method for the analysis of pesticides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.