We consider a generalization of the well-known domination problem on graphs. The (soft) capacitated domination problem with demand constraints is to find a dominating set D of minimum cardinality satisfying both the capacity and demand constraints. The capacity constraint specifies that each vertex has a capacity that it can use to meet the demands of dominated vertices in its closed neighborhood, and the number of copies of each vertex allowed in D is unbounded. The demand constraint specifies the demand of each vertex in V to be met by the capacities of vertices in D dominating it. In this paper, we study the capacitated domination problem on trees from an algorithmic point of view. We present a linear time algorithm for the unsplittable demand model, and a pseudo-polynomial time algorithm for the splittable demand model. In addition, we show that the capacitated domination problem on trees with splittable demand constraints is NP-complete (even for its integer version) and provide a polynomial time approximation scheme (PTAS). We also give a primal-dual approximation algorithm for the weighted capacitated domination problem with splittable demand constraints on general graphs.
We consider the Capacitated Domination problem, which models a service-requirement assignment scenario and is also a generalization of the well-known Dominating Set problem. In this problem, given a graph with three parameters defined on each vertex, namely cost, capacity, and demand, we want to find an assignment of demands to vertices of least cost such that the demand of each vertex is satisfied subject to the capacity constraint of each vertex providing the service.In terms of polynomial time approximations, we present logarithmic approximation algorithms with respect to different demand assignment models for this problem on general graphs, which also establishes the corresponding approximation results to the well-known approximations of the traditional Dominating Set problem. Together with our previous work, this closes the problem of generally approximating the optimal solution. On the other hand, from the perspective of parameterization, we prove that this problem is W[1]-hard when parameterized by a structure of the graph called treewidth. Based on this hardness result, we present exact fixedparameter tractable algorithms when parameterized by treewidth and maximum capacity of the vertices. This algorithm is further extended to obtain pseudo-polynomial time approximation schemes for planar graphs.
We consider the problem of online dynamic power management that provides hard real-time guarantees for multi-processor systems. In this problem, a set of jobs, each associated with an arrival time, a deadline, and an execution time, arrives to the system in an online fashion. The objective is to compute a non-migrative preemptive schedule of the jobs and a sequence of power on/off operations of the processors so as to minimize the total energy consumption while ensuring that all the deadlines of the jobs are met. We assume that we can use as many processors as necessary. In this paper we examine the complexity of this problem and provide online strategies that lead to practical energy-efficient solutions for real-time multi-processor systems.First, we consider the case for which we know in advance that the set of jobs can be scheduled feasibly on a single processor. We show that, even in this case, the competitive factor of any online algorithm is at least 2.06. On the other hand, we give a 4-competitive online algorithm that uses at most two processors. For jobs with unit execution times, the competitive factor of this algorithm improves to 3.59.Second, we relax our assumption by considering as input multiple streams of jobs, each of which can be scheduled feasibly on a single processor. We present a trade-off between the energyefficiency of the schedule and the number of processors to be used. More specifically, for k given job streams and h processors with h > k, we give a scheduling strategy such that the energy usage is at most 4 · k h−k times that used by any schedule which schedules each of the k streams on a separate processor. Finally, we drop the assumptions on the input set of jobs. We show that the competitive factor of any online algorithm is at least 2.28, even for the case of unit job execution times for which we further derive an O(1)-competitive algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.