A critical feature of Mycobacterium tuberculosis, the causative agent of human tuberculosis (TB), is its ability to survive and multiply within macrophages, making these host cells an ideal niche for persisting microbes. Killing the intracellular tubercle bacilli is a key requirement for efficient tuberculosis treatment, yet identifying potent inhibitors has been hampered by labor-intensive techniques and lack of validated targets. Here, we present the development of a phenotypic cell-based assay that uses automated confocal fluorescence microscopy for high throughput screening of chemicals that interfere with the replication of M. tuberculosis within macrophages. Screening a library of 57,000 small molecules led to the identification of 135 active compounds with potent intracellular anti-mycobacterial efficacy and no host cell toxicity. Among these, the dinitrobenzamide derivatives (DNB) showed high activity against M. tuberculosis, including extensively drug resistant (XDR) strains. More importantly, we demonstrate that incubation of M. tuberculosis with DNB inhibited the formation of both lipoarabinomannan and arabinogalactan, attributable to the inhibition of decaprenyl-phospho-arabinose synthesis catalyzed by the decaprenyl-phosphoribose 2′ epimerase DprE1/DprE2. Inhibition of this new target will likely contribute to new therapeutic solutions against emerging XDR-TB. Beyond validating the high throughput/content screening approach, our results open new avenues for finding the next generation of antimicrobials.
Tuberculosis is still a leading cause of death worldwide. The selection and spread of Mycobacterium tuberculosis multidrug-resistant (MDR-TB) and extensively drug-resistant strains (XDR-TB) is a severe public health problem. Recently, two different classes of chemical series, the benzothiazinones (BTZ) and the dinitrobenzamide (DNB) derivatives have been found to be highly active against M. tuberculosis, including XDR-TB strains. The target of BTZs is DprE1 protein which works in concert with DprE2 to form the heteromeric decaprenylphosphoryl-β-D-ribose 2′-epimerase, involved in Decaprenyl-Phospho-Arabinose (DPA) biosynthesis. Interestingly, it has been shown that the DNBs block the same pathway thus suggesting that both drugs could share the same target. Moreover, in Mycobacterium smegmatis the overexpression of the NfnB nitroreductase led to the inactivation of the BTZs by reduction of a critical nitro-group to an amino-group. In this work several spontaneous M. smegmatis mutants resistant to DNBs were isolated. Sixteen mutants, showing high levels of DNB resistance, exhibited a mutation in the Cys394 of DprE1. Using fluorescence titration and mass spectrometry it has been possible to monitor the binding between DprE1 and DNBs, achieving direct evidence that MSMEG_6382 is the cellular target of DNBs in mycobacteria. Additionally, M. smegmatis mutants having low levels of resistance to DNBs harbor various mutations in MSMEG_6503 gene encoding the transcriptional repressor of the nitroreductase NfnB. By LC/MS2 analysis it has been demonstrated that NfnB is responsible for DNB inactivation. Taken together, our data demonstrate that both DNB and BTZ drugs share common resistance mechanisms in M. smegmatis.
Increasing evidence shows that the spatial organization of transcription is an important epigenetic factor in eukaryotic gene regulation. The malaria parasite Plasmodium falciparum shows a remarkably complex pattern of gene expression during the erythrocytic cycle, paradoxically contrasting with the relatively low number of putative transcription factors encoded by its genome. The spatial organization of nuclear subcompartments has been correlated with the regulation of virulence genes. Here, we investigate the nuclear architecture of transcription during the asexual cycle of malaria parasites. As in mammals, transcription is organized into discrete nucleoplasmic sites in P. falciparum, but in a strikingly lower number of foci. An automated analysis of 3D images shows that the number and intensity of transcription sites vary significantly between rings and trophozoites, although the nuclear volume remains constant. Transcription sites are spatially reorganized during the asexual cycle, with a higher proportion of foci located in the outermost nuclear region in rings, whereas in trophozoites, foci are evenly distributed throughout the nucleoplasm. As in higher eukaryotes, transcription sites are predominantly found in areas of low chromatin density. Immunofluorescence analysis shows that transcription sites form an exclusive nuclear compartment, different from the compartments defined by the silenced or active chromatin markers. In conclusion, these data suggest that transcription is spatially contained in discrete foci that are developmentally regulated during the asexual cycle of malaria parasites and located in areas of low chromatin density.
Fluorescence in situ hybridization (FISH) has been used extensively in the study of nuclear organization and gene positioning in Plasmodium falciparum. While performing FISH with published protocols, we observed large variations in parasite nuclear morphology. We hypothesized that these inconsistencies might be due to the type of parasite preparation prior to FISH, which commonly involves air-drying, prompting us to develop a new fixation protocol. Here we show both qualitatively and quantitatively that compared to air-dried and briefly fixed parasites, longer fixation in suspension leads to improved conservation of nuclear structure and lower intra-population variation of nuclear shape as well as area after FISH development. While the fixation protocol per se does not cause detectable disruptions in nuclear morphology, it greatly influences the conservation of nuclear shape and size during the most stringent steps of FISH. The type of fixation used also influences the detection of telomeric clusters, and we show that the new fixation protocol permits improved conservation of the chromosome end cluster perinuclear distribution and higher colocalization indexes for two adjacent chromosome end probes, Rep20 and telomere. Overall, the results indicate that our alternative protocol dramatically improves conservation of the nuclear architecture compared to previously reported Plasmodium DNA-FISH protocols and highlights the necessity of carefully choosing the fixation protocol for FISH.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.