Methylmalonyl-CoA mutase (MMCM) is an enzyme that utilizes the adenosylcobalamin (AdoCbl) cofactor to catalyze the rearrangement of methylmalonyl-CoA to succinyl-CoA. Despite many years of dedicated research, the mechanism by which MMCM and related AdoCbl-dependent enzymes accelerate the rate for homolytic cleavage of the cofactor's Co-C bond by approximately 12 orders of magnitude while avoiding potentially harmful side reactions remains one of the greatest subjects of debate among B(12) researchers. In this study, we have employed electronic absorption (Abs) and magnetic circular dichroism (MCD) spectroscopic techniques to probe cofactor/enzyme active site interactions in the Co(3+)Cbl "ground" state for MMCM reconstituted with both the native cofactor AdoCbl and its derivative methylcobalamin (MeCbl). In both cases, Abs and MCD spectra of the free and enzyme-bound cofactor are very similar, indicating that replacement of the intramolecular base 5,6-dimethylbenzimidazole (DMB) by a histidine residue from the enzyme active site has insignificant effects on the cofactor's electronic properties. Likewise, spectral perturbations associated with substrate (analogue) binding to holo-MMCM are minor, arguing against substrate-induced enzymatic Co-C bond activation. As compared to the AdoCbl data, however, Abs and MCD spectral changes for the sterically less constrained MeCbl cofactor upon binding to MMCM and treatment of holoenzyme with substrate (analogues) are much more substantial. Analysis of these changes within the framework of time-dependent density functional theory calculations provides uniquely detailed insight into the structural distortions imposed on the cofactor as the enzyme progresses through the reaction cycle. Together, our results indicate that, although the enzyme may serve to activate the cofactor in its Co(3+)Cbl ground state to a small degree, the dominant contribution to the enzymatic Co-C bond activation presumably comes through stabilization of the Co(2+)Cbl/Ado. post-homolysis products.
A two-thiol reactive lanthanide-DOTA (1,4,7,10-tetraazacyclododecane-N,N',N'',N'''-tetraacetic acid) chelate, CLaNP-3 (CLaNP=caged lanthanide NMR probe), was synthesized for the rigid attachment to cysteine groups on a protein surface, and used to obtain long-range-distance information from the {15N,1H} HSQC spectra of the protein-lanthanide complex. The DOTA ring exhibits several isomers that are in exchange; however, single resonances were observed for most amide groups in the protein, allowing determination of a single, apparent magnetic-susceptibility tensor. Pseudocontact shifts caused by Yb-containing CLaNP-3 were observed for atoms at 15-35 A from the metal. By using Gd-containing CLaNP-3, relaxation effects were observed, allowing distances up to 30 A from the paramagnetic center to be determined accurately. Similar results were obtained with a Gd-DTPA (diethylene-triaminepentaacetic acid) chelate, CLaNP-1, bound in the same bidentate manner to the protein. This study demonstrates that bidentate attachment of a paramagnetic probe enables determination of long-range distances.
The contribution of the active-site residue, Y89, to the trillion-fold acceleration of Co-carbon bond homolysis rate in the methylmalonyl-CoA mutase-catalyzed reaction has been evaluated by site-directed mutagenesis. Conversion of Y89 to phenylalanine or alanine results in a 10(3)-fold diminution of k(cat) and suppression of the overall kinetic isotope effect. The spectrum of the enzyme under steady-state conditions reveals the presence of AdoCbl but no cob(II)alamin. Together, these results are consistent with homolysis becoming completely rate determining in the forward direction in the two mutants and points to the role of Y89 as a molecular wedge in accelerating Co-carbon bond cleavage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.