Objective The objective of this study was to investigate the impact of two different commercially available dental implants on osseointegration.The surfaces were sandblasting and acid etching (Group 1) and sandblasting and acid etching, then maintained in an isotonic solution of 0.9% sodium chloride (Group 2).Material and Methods X-ray photoelectron spectroscopy (XPS) was employed for surface chemistry analysis. Surface morphology and topography was investigated by scanning electron microscopy (SEM) and confocal microscopy (CM), respectively. Contact angle analysis (CAA) was employed for wetting evaluation. Bone-implant-contact (BIC) and bone area fraction occupied (BAFO) analysis were performed on thin sections (30 μm) 14 and 28 days after the installation of 10 implants from each group (n=20) in rabbits’ tibias. Statistical analysis was performed by ANOVA at the 95% level of significance considering implantation time and implant surface as independent variables.Results Group 2 showed 3-fold less carbon on the surface and a markedly enhanced hydrophilicity compared to Group 1 but a similar surface roughness (p>0.05). BIC and BAFO levels in Group 2 at 14 days were similar to those in Group 1 at 28 days. After 28 days of installation, BIC and BAFO measurements of Group 2 were approximately 1.5-fold greater than in Group 1 (p<0.05).Conclusion The surface chemistry and wettability implants of Group 2 accelerate osseointegration and increase the area of the bone-to-implant interface when compared to those of Group 1.
Objectives This study aims to compare the treatment outcomes of periodontal intrabony defects by using platelet-rich fibrin (PRF) with other commonly utilized modalities. Materials and methods The eligibility criteria comprised randomized controlled trials (RCTs) comparing the clinical outcomes of PRF with that of other modalities. Studies were classified into 10 categories as follows: (1) open flap debridement (OFD) alone versus OFD/PRF; (2) OFD/bone graft (OFD/BG) versus OFD/PRF; (3) OFD/BG versus OFD/BG/PRF; (4–6) OFD/barrier membrane (BM), OFD/PRP, or OFD/enamel matrix derivative (EMD) versus OFD/PRF; (7) OFD/EMD versus OFD/EMD/PRF; (8–10) OFD/PRF versus OFD/PRF/metformin, OFD/PRF/bisphosphonates, or OFD/PRF/statins. Weighted means and forest plots were calculated for probing depth (PD), clinical attachment level (CAL), and radiographic bone fill (RBF). Results From 551 articles identified, 27 RCTs were included. The use of OFD/PRF statistically significantly reduced PD and improved CAL and RBF when compared to OFD. No clinically significant differences were reported when OFD/BG was compared to OFD/PRF. The addition of PRF to OFD/BG led to significant improvements in CAL and RBF. No differences were reported between any of the following groups (OFD/BM, OFD/PRP, and OFD/EMD) when compared to OFD/PRF. No improvements were also reported when PRF was added to OFD/EMD. The addition of all three of the following biomolecules (metformin, bisphosphonates, and statins) to OFD/PRF led to statistically significant improvements of PD, CAL, and RBF. Conclusions The use of PRF significantly improved clinical outcomes in intrabony defects when compared to OFD alone with similar levels being observed between OFD/BG and OFD/PRF. Future research geared toward better understanding potential ways to enhance the regenerative properties of PRF with various small biomolecules may prove valuable for future clinical applications. Future research investigating PRF at histological level is also needed. Clinical relevance The use of PRF in conjunction with OFD statistically significantly improved PD, CAL, and RBF values, yielding to comparable outcomes to OFD/BG. The combination of PRF with bone grafts or small biomolecules may offer certain clinical advantages, thus warranting further investigations.
No statistically significant difference was observed between TG1 and TG2 after 6 months (P > 0.05), and both biomaterials afforded a more favorable implant position.
ObjectiveThis study aimed to evaluate bone repair in rat dental sockets after implanting nanostructured carbonated hydroxyapatite/sodium alginate (CHA) and nanostructured carbonated hydroxyapatite/sodium alginate containing 5% strontium microspheres (SrCHA) as bone substitute materials.MethodsTwenty male Wistar rats were randomly divided into two experimental groups: CHA and SrCHA (n=5/period/group). After one and 6 weeks of extraction of the right maxillary central incisor and biomaterial implantation, 5 μm bone blocks were obtained for histomorphometric evaluation. The parameters evaluated were remaining biomaterial, loose connective tissue and newly formed bone in a standard area. Statistical analysis was performed by Mann-Withney and and Wilcoxon tests at 95% level of significance.ResultsThe histomorphometric results showed that the microspheres showed similar fragmentation and bio-absorbation (p>0.05). We observed the formation of new bones in both groups during the same experimental periods; however, the new bone formation differed significantly between the weeks 1 and 6 (p=0.0039) in both groups.ConclusionThe CHA and SrCHA biomaterials were biocompatible, osteoconductive and bioabsorbable, indicating their great potential for clinical use as bone substitutes.
Data from this SR strongly suggest the association of asthma with periodontal disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.