Abstract:Hydropower plays a key role in the actual energy market due to its fast response and regulation capacity. In that way, hydraulic turbines are increasingly demanded to work at off-design conditions, where complex flow patterns and cavitation appear, especially in Francis turbines. The draft tube cavitation surge is a hydraulic phenomenon that appears in Francis turbines below and above its Best Efficiency Point (BEP). It is a low frequency phenomenon consisting of a vortex rope in the runner outlet and draft tube, which can become unstable when its frequency coincides with a natural frequency of the hydraulic circuit. At this situation, the output power can significantly swing, endangering the electrical grid stability. This study is focused on the detection of these instabilities in Francis turbines and their relationship with the output power swings. To do so, extensive experimental tests for different operating conditions have been carried out in a large prototype Francis turbine (444 MW of rated power) within the frame of the European Project Hyperbole (FP7-ENERGY-2013-1). Several sensors have been installed in the hydraulic circuit (pressure sensors in the draft tube, spiral casing, and penstock), in the rotating and static structures (vibration sensors, proximity probes, and strain gauges in the runner and in the shaft), as well as in the electrical side (output power, intensity, and voltage). Moreover, a numerical Finite Element Method (FEM) has been also used to relate the hydraulic excitation with the output power swing.
In this paper, an uncommon failure of a Pelton turbine has been analyzed. After the monitoring system detected a sudden increase in the vibration levels, the turbine was inspected. The inspection showed that a fragment of one bucket broke off during operation. Moreover there were several buckets with cracks, always located in the same side of the buckets. An analysis of the detached fragment revealed a fatigue problem.After the damage was found, the vibration signatures measured by the monitoring system before damage, with damage and after repair, were analyzed. Before damage occurred, an excessive axial vibration and the excitation of several natural frequencies of the turbine were detected in the measured vibration.In order to identify the origin of the problem the first task was to analyze the dynamic response of the turbine. A numerical model of the runner using the finite element method (FEM) was done. Experimental research using modal analysis techniques (EMA) was also carried out in the turbine runner. The results of the numerical model were compared with the experimental results obtained. With the validated numerical model natural frequencies and mode-shapes were determined and studied.The next step was to determine experimentally the influence of the mounting conditions on the runner dynamics and the transmissibility of the runner vibrations to the machine bearings where the monitoring sensors are located.From the results of this study it was concluded that the natural frequencies excited during machine operation had axial mode shapes indicating that axial forces were applied to the runner. In a Pelton turbine, this can only be produced by a misaligned jet.To determine the influence of a misaligned jet on the bucket stresses, the dynamic behavior of the runner was performed. The dynamic force of the water jet was applied to the runner bucket. The results showed that with a misaligned jet the dynamic stress distribution increases in one side of the bucket with a maximum stress located where the cracks appeared.Postprint (author's final draft
The ability of hydropower to adapt the electricity generation to the demand is necessary to integrate wind and solar energy into the electrical grid. Nowadays hydropower turbines are required to work under harsher operating conditions and an advanced condition monitoring to detect damage is crucial. In this paper the methodology to improve the condition monitoring of Pelton turbines is presented. First, the field data obtained from the vibration monitoring of 28 different Pelton turbines over 25 years has been studied. The main types of damage found were due to fatigue, cavitation and silt erosion. By analyzing the vibration signatures before and after maintenance tasks, the symptoms of damage detected from the measuring locations were determined for each case. Second, a physics-based model using numerical methods (FEM) was built-up in order to simulate the dynamic behavior of the turbine. The model was validated with the results obtained from on-site tests that were carried out in an existing turbine. The deformations and the stresses of the runner under different operating conditions could be then computed. The calibrated model was used to analyze in detail the effect of misalignment between nozzle and runner. In historic cases, this abnormal operating condition lead to severe damage in the turbine, due to the effect of fatigue in some locations of the buckets. The model reproduced rather well the symptoms detected in the field measurements. The stresses could be calculated which eventually can be used to estimate the remaining useful life of the turbine. *Manuscript Click here to download Manuscript: Manuscript-Pelton.pdf Click here to view linked References
Abstract:One of the main causes of damage in hydraulic turbines is cavitation. While not all cavitation appearing in a turbine is of a destructive type, erosive cavitation can severely affect the structure, thus increasing maintenance costs and reducing the remaining useful life of the machine. Of all types of cavitation, the maximum erosion occurs when clouds of bubbles collapse on the runner surface (cloud cavitation). When this occurs it is associated with a substantial increase in noise, and vibrations that are propagated everywhere throughout the machine. The generation of these cavitation clouds may occur naturally or it may be the response to a periodic pressure fluctuation, like the rotor/stator interaction in a hydraulic turbine. Erosive bubble cavitation generates high-frequency vibrations that are modulated by the shedding frequency. Therefore, the methods for the detection of erosive cavitation in hydraulic turbines are based on the measurement and demodulation of high-frequency vibrations. In this paper, the feasibility of detecting erosive cavitation in hydraulic turbines is investigated experimentally in a rotating disk system, which represents a simplified hydraulic turbine structure. The test rig used consists of a rotating disk submerged in a tank of water and confined with nearby axial and radial rigid surfaces. The excitation patterns produced by cloud cavitation are reproduced with a PZT (piezoelectric patch) located on the disk. These patterns include pseudo-random excitations of different frequency bands modulated by one low carrier frequency, which model the erosive cavitation characteristics. Different types of sensors have been placed in the stationary and in the rotating parts (accelerometers, acoustic emission (AE), and a microphone) in order to detect the excitation pattern. The results obtained for all the sensors tested have been compared in detail for the different excitation patterns applied to the disk. With this information, the best location and type of sensor to detect the different excitations have been identified. This study permits improving the actual technique of detecting erosive cavitation in hydraulic turbines and, therefore, to avoid operation under these circumstances.
Due to the increasing share of new renewable energies like wind and solar in the generation of electricity the need for power regulation and energy storage is becoming of paramount importance. One of the systems to store huge amounts of energy is pumped storage using reversible hydropower units. The machines used in these power plants are pump-turbines, which can operate as a pump and as a turbine. The surplus of electrical energy during low consumption hours can be converted into potential hydraulic energy by pumping water to a higher level. The stored energy can be converted into electricity again by operating the runner as a turbine. Due to new regulation requirements machines have to extend the operating range in order to match energy generation with consumption for the grid stability. In this paper the consequences of extending the operating range in existing pump-turbines have been studied. For that purpose, the data obtained after two years of condition monitoring were analyzed. Vibrations and pressure fluctuations of two pump-turbines of 85 MW each have been studied during pump and turbine operation. For turbine operation the effects of extending the operating range from the standard range of 45-85 MW to and increased range of 20-85 MW were analyzed. The change in vibration levels and signatures at very low load are presented with the identification of the phenomena that occur under these conditions. The influence of head in the vibration behavior is also presented. The appearance of fluid instabilities generated at part load that may produce power swing is also presented. Finally, the effect of head on the vibration levels for pump operation is shown and analyzed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.