Brain circuitry underlying cognition, emotion, and perception is abnormal in schizophrenia. There is considerable evidence that the neuropathology of schizophrenia includes the thalamus, a key hub of cortical-subcortical circuitry and an important regulator of cortical activity. However, the thalamus is a heterogeneous structure composed of several nuclei with distinct inputs and cortical connections. Limitations of conventional neuroimaging methods and conflicting findings from post-mortem investigations have made it difficult to determine if thalamic pathology in schizophrenia is widespread or limited to specific thalamocortical circuits. Resting-state fMRI has proven invaluable for understanding the large-scale functional organization of the brain and investigating neural circuitry relevant to psychiatric disorders. This article summarizes resting-state fMRI investigations of thalamocortical functional connectivity in schizophrenia. Particular attention is paid to the course, diagnostic specificity, and clinical correlates of thalamocortical network dysfunction.
The results are consistent with models implicating disrupted PFC-thalamic connectivity in the pathophysiology of schizophrenia and mechanisms of cognitive impairment. PFC-thalamic anatomical connectivity may be an important target for procognitive interventions. Further work is needed to determine the implications of increased thalamic connectivity with sensory cortex.
Background Individuals with autism spectrum disorder (ASD) exhibit differences in basic sensorimotor processing as well as general cortical excitability. These observations converge to implicate thalamocortical connectivity as a potential unifying neural mechanism. The goal of this study was to clarify mixed findings on thalamocortical functional connectivity in a large sample of individuals with ASD. Methods Using the Autism Brain Imaging Data Exchange (ABIDE), we examined thalamocortical functional connectivity in 228 individuals with ASD and a matched comparison group of 228 typically developing individuals. In order to fully characterize thalamocortical functional networks, we employed complementary seed-based approaches that examined connectivity of major cortical divisions (e.g. prefrontal cortex, temporal lobe) with the thalamus and whole-brain connectivity of specific thalamic sub-regions. Results Prefrontal cortex, temporal lobe, and sensorimotor cortex exhibited hyper-connectivity with the thalamus in ASD. In the whole-brain analysis, hyper-connectivity of several thalamic seeds included multiple cortical areas, but tended to converge in temporal cortical areas, including the temporoparietal junction. Follow-up analyses of age effects revealed that the connectivity abnormalities in ASD were more pronounced in adolescents compared to children and adults. Conclusions These results confirm previous findings of temporal and motor thalamocortical hyper-connectivity in ASD, and extend them to include somatosensory and prefrontal cortex. While not directly addressable with the data available in ABIDE, this widespread hyper-connectivity could theoretically account for sensorimotor symptoms and general cortical excitability in ASD. Future studies should target comprehensive clinical and behavioral characterization in combination with functional connectivity in order to explore this possibility.
There has been a recent call for longitudinal cohort studies to track the physiological recovery of sport-related concussion (SRC) and its relationship with clinical recovery. Resting-state functional magnetic resonance imaging (rs-fMRI) has shown potential for detecting subtle changes in brain function after SRC. We investigated the effects of SRC on rs-fMRI metrics assessing local connectivity (regional homogeneity; REHO), global connectivity (average nodal strength), and the relative amplitude of slow oscillations of rs-fMRI (fractional amplitude of low-frequency fluctuations; fALFF). Athletes diagnosed with SRC (n = 92) completed visits with neuroimaging at 24-48 h post-injury (24 h), after clearance to begin the return-to-play (RTP) progression (asymptomatic), and 7 days following unrestricted RTP (post-RTP). Noninjured athletes (n = 82) completed visits yoked to the schedule of matched injured athletes and served as controls. Concussed athletes had elevated symptoms, worse neurocognitive performance, greater balance deficits, and elevated psychological symptoms at the 24-h visit relative to controls.These deficits were largely recovered by the asymptomatic visit. Concussed athletes still reported elevated psychological symptoms at the asymptomatic visit relative to controls. Concussed athletes also had elevated REHO in the right middle and superior frontal gyri at the 24-h visit that returned to normal levels by the asymptomatic visit. Additionally, REHO in these regions at 24 h predicted psychological symptoms at the asymptomatic visit in concussed athletes. Current results suggest that SRC is associated with an acute alteration in local connectivity that follows a similar time course as clinical recovery. Our results do not indicate strong evidence that concussion-related alterations in rs-fMRI persist beyond clinical recovery.
Developmental dyslexia is a common learning disability characterized by normal intelligence but difficulty in skills associated with reading, writing and spelling. One of the most prominent, albeit controversial, theories of dyslexia is the magnocellular theory, which suggests that malfunction of the magnocellular system in the brain is responsible for the behavioral deficits. We sought to test the basis of this theory by directly measuring the lateral geniculate nucleus (LGN), the only location in the brain where the magnocellular and parvocellular streams are spatially disjoint. Using high-resolution proton-density weighted MRI scans, we precisely measured the anatomical boundaries of the LGN in 13 subjects with dyslexia (five female) and 13 controls (three female), all 22–26 years old. The left LGN was significantly smaller in volume in subjects with dyslexia and also differed in shape; no differences were observed in the right LGN. The functional significance of this asymmetry is unknown, but these results are consistent with the magnocellular theory and support theories of dyslexia that involve differences in the early visual system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.