It has been demonstrated that during pregnancy expiratory reserve volume (ERV) decreases and minute ventilation (VE) increases initially and then stabilizes. In order to determine the role of thoracoabdominal mechanics, control of breathing, and inspiratory muscle function in these alterations, we studied inspiratory pressures, lung volumes, thoracic configuration, and respiratory drive in 18 normal pregnant women at Weeks 13, 21, 30, and 37 of pregnancy. Ten of them were studied 6 months after delivery. Transdiaphragmatic pressure (Pdi) was measured at Week 37 and 3 months after delivery in an additional group of seven women. VE as well as VT/TI increased early during gestation and remained unchanged thereafter. In contrast, mouth occlusion pressure (P0.1) increased progressively during pregnancy, from 1.53 +/- 0.16 (mean +/- SE) to 2.02 +/- 0.18 cm H2O, and fell significantly to 1.1 +/- 0.15 cm H2O after delivery, indicating that effective respiratory impedance increases during pregnancy. Mean P0.1 correlated with progesterone plasma levels (r = 0.918 p less than 0.05). No changes in Plmax, PEmax, and Pdimax, were observed. End-expiratory gastric pressure (Pga) increases significantly during pregnancy: 11.8 +/- 0.8 versus 8.4 +/- 1.12 cm H2O after delivery (p less than 0.012). This increment was correlated with the fall in ERV observed in late pregnancy (r = 0.74 p less than 0.05). Our results demonstrate that during pregnancy ventilatory drive and respiratory impedance increase with the consequent stabilization of VE, but our data do not permit us to differentiate whether the increment in P0.1 is secondary to the increase in impedance or to the rise in progesterone. Respiratory muscle function remains normal despite the alteration of thoracic configuration.
Lifestyle behaviors across the 24-h spectrum (i.e., sleep, sedentary, and active behaviors) drive metabolic risk. We describe the development and process evaluation of BeWell24, a multicomponent smartphone application (or "app") that targets behavior change in these interdependent behaviors. A community-embedded iterative design framework was used to develop the app. An 8-week multiphase optimization strategy design study was used to test the initial efficacy of the sleep, sedentary, and exercise components of the app. Process evaluation outcomes included objectively measured app usage statistics (e.g., minutes of usage, self-monitoring patterns), user experience interviews, and satisfaction ratings. Participants (N = 26) logged approximately 60 % of their sleep, sedentary, and exercise behaviors, which took 3-4 min/day to complete. Usage of the sleep and sedentary components peaked at week 2 and remained high throughout the intervention. Exercise component use was low. User experiences were mixed, and overall satisfaction was modest.
We studied the effects of an 8-h, once-a-week schedule of cuirass ventilation (CV) in 5 patients with advanced chronic air-flow limitation and chronic hypercarbia (PaCO2, 58.6 +/- 10.1 mm Hg; mean +/- SD). Repeated measurements of arterial blood gases, maximal inspiratory mouth pressure (P1max), 12-min walking distance, and respiratory cycle were performed during a 1-month run-in period. Quality of life and transdiaphragmatic pressure were measured once. All patients completed the planned 4-month study. Four of them were ventilated for longer periods because CV could not be discontinued at the end of the study. PaCO2 showed a significant fall starting during the first month; PaO2 significantly increased from the second month, whereas P1max significantly rose from the third month on. Maximal transdiaphragmatic pressure increased in the 2 patients with abnormal baseline values. The fall in PaCO2 was associated with an increase in tidal volume because of a longer inspiratory time. Significant improvements in quality of life and in the 12-min walking distance were observed. We conclude that weekly CV improves blood gases, inspiratory muscle strength, and clinical conditions of patients with chronic air-flow limitation and chronic hypercarbia, probably because of correction of chronic inspiratory muscle fatigue.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.