In this paper, the corrosion of steel pipelines transporting hydrocarbon condensed products was studied. Different activities of sampling and analysis were carried out to diagnose the failure causes and to establish a control system for the corrosion problem. The combination of three types of corrosion, including erosion corrosion, galvanic corrosion and microbiologically induced corrosion, was synthetically considered. A serial of experiments were designed to research those types of corrosion. This type of failure was observed in characteristics sites of the pipeline, mainly in direction changes and welding joints. Additionally, localized corrosion was observed in the inner steel wall and distributed along the pipeline, although a tendency was not detected.
In the present work, the susceptibility of API 5L X52 steel to corrosion processes was evaluated in the presence of high contents of hydrogen sulfide and carbon dioxide. Gravimetric tests and surface analyses were carried out to establish both the corrosion rate and damage type exhibited by the metal. The obtained results indicate that the hydrogen sulfide is the most active gas in the corrosion processes that took place, quite above carbon dioxide. The main observed corrosion products were iron sulfides and the typical damage associated with hydrogen sulfide presence was Sulfide Stress Cracking (SSC). The surface damage evidences the presence of cracks with considerable magnitude and metal loss as consequences of the corrosion processes. Likewise, the presence of oxygen in the system modifies the displayed corrosion type, where corrosion products such as iron oxides and reduction in the number and extent of cracks are observed. On the other hand, the addition of a film-forming corrosion inhibitor based on modified imidazolines eliminates completely the development of cracks, although under certain test conditions, it can favor localized pitting corrosion.
An epoxy penetration technique was used to reproduce and analyze the pitting corrosion process occurred at a steel coupon surface. The samples were exposed to the resin under high vacuum conditions, in order to fulfill the pits caused by the corrosion process. With this technique, a 3D image of the corrosion damages was obtained.Once the image of the damaged surface was obtained, a Scanning Electron Microscope (SEM) was used to analyze the morphology of the pits exhibited by the steel sample. The results were satisfactory, as different parameters such as the diameter, shape and depth of the pits originated, along with the corrosion preferential path, could be established.According to the results, the use of the epoxy penetration technique may be considered as alternating pitting corrosion analysis technique.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.