Vaccination has been the most widely used strategy to protect against viral infections for centuries. However, the molecular mechanisms governing the long-term persistence of immunological memory in response to vaccines remain unclear. Here we show that autophagy plays a critical role in the maintenance of memory B cells against influenza virus infection. Memory B cells displayed elevated levels of basal autophagy with increased expression of genes that regulate autophagy initiation or autophagosome maturation. Mice with B cell-specific deletion of Atg7 (B/Atg7−/−) showed normal primary antibody responses after immunization against influenza, but failed to generate protective secondary antibody responses when challenged with influenza viruses, resulting in high viral loads, widespread lung destruction and increased fatality. Our results suggest that autophagy is essential for the survival of virus-specific memory B cells and the maintenance of protective antibody responses required to combat infections.
Airborne pathogens commonly trigger severe respiratory failure or death in smokers with lung disease. Cigarette smoking compromises the effectiveness of innate immunity against infections but the underlying mechanisms responsible for defective acquired immune responses in smokers remains less clear. We found that mice exposed to chronic cigarette smoke recovered poorly from primary Influenza A pneumonia with reduced type I and II interferons (IFNs) and viral-specific immunoglobulins, but recruited gamma delta (γδ) T cells to the lungs that predominantly expressed interleukin 17A (IL-17A). Il-17a-/- mice exposed to smoke and infected with Influenza A also recruited γδ T cells to the lungs, but in contrast to wild type mice, expressed increased IFNs, made protective influenza specific antibodies, and recovered from infection. Depletion of IL-17A with blocking antibodies significantly increased T-bet expression in γδ T cells and improved recovery from acute Influenza A infection in air, but not smoke exposed mice. In contrast, when exposed to smoke, γδ T cell deficient mice failed to mount an effective immune response to Influenza A and showed increased mortality. Our findings demonstrate a protective role for γδ T cells in smokers and suggest that smoke-induced increase in IL-17A inhibits the transcriptional programs required for their optimal anti-viral responses.
Exposure to cigarette smoke can initiate sterile inflammatory responses in the lung and activate myeloid dendritic cells (mDCs) that induce differentiation of T helper type 1 (Th1) and Th17 cells in the emphysematous lungs. Consumption of complement proteins increases in acute inflammation, but the contribution of complement protein 3 (C3) to chronic cigarette smoke-induced immune responses in the lung is not clear. Here we show that following chronic exposure to cigarette smoke, C3 deficient (C3−/−) mice develop less emphysema and have fewer CD11b+CD11c+ mDCs infiltrating the lungs as compared to wild type mice. Proteolytic cleavage of C3 by neutrophil elastase releases C3a, which in turn increases expression of its receptor (C3aR) on lung mDCs. Mice deficient in the C3aR (C3ar−/−) partially phenocopy the attenuated responses to chronic smoke observed in C3−/− mice. Consistent with a role for C3 in emphysema C3 and its active fragments are deposited on the lung tissue of smokers with emphysema, and smoke exposed mice. Together, these findings suggest a critical role for C3a through autocrine/paracrine induction of C3aR in the pathogenesis of cigarette smoke induced sterile inflammation and provide new therapeutic targets for the treatment of emphysema.
Loss of immune tolerance to self-antigens can promote chronic inflammation and disrupt the normal function of multiple organs, including the lungs. Degradation of elastin, a highly insoluble protein and a significant component of the lung structural matrix, generates proinflammatory molecules. Elastin fragments (EFs) have been detected in the serum of smokers with emphysema, and elastin-specific T cells have also been detected in the peripheral blood of smokers with emphysema. However, an animal model that could recapitulate T cell–specific autoimmune responses by initiating and sustaining inflammation in the lungs is lacking. In this study, we report an animal model of autoimmune emphysema mediated by the loss of tolerance to elastin. Mice immunized with a combination of human EFs plus rat EFs but not mouse EFs showed increased infiltration of innate and adaptive immune cells to the lungs and developed emphysema. We cloned and expanded mouse elastin-specific CD4+ T cells from the lung and spleen of immunized mice. Finally, we identified TCR sequences from the autoreactive T cell clones, suggesting possible pathogenic TCRs that can cause loss of immune tolerance against elastin. This new autoimmune model of emphysema provides a useful tool to examine the immunological factors that promote loss of immune tolerance to self.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.