Abstract. In this work the SERS total half bandwidths of five genomic DNAs from in vitro-grown apple leaf tissues (Malus domestica Borkh., Fam Rosaceae, cvs. Florina, Rebra, Goldrush, Romus 3 and Romus 4) have been measured. We have shown that surface-enhanced Raman scattering can be used to study the fast subpicosecond dynamics of DNA in the proximity of a metallic surface. The dependencies of the total half bandwidths and of the global relaxation times, on DNA molecular subgroup structure, on the type of genomic apple plant DNA and on time, are reported. An example of the time-dependence of SERS band parameters of DNA, in the proximity of silver nanoparticles, has been given. It is shown that changes in the subpicosecond surface dynamics of molecular subgroups in genomic DNAs from in vitro-grown apple leaf tissues can be monitored with surface-enhanced Raman spectroscopy.Particularly O)] of genomic DNAs from apple leaves are presented. In our study, the full widths at half-maximum (FWHM) of the bands in genomic DNAs from in vitro-grown apple leaf tissues are typically in the wavenumber range from 14 to 52 cm −1 . Besides, it can be observed that molecular relaxation processes studied in this work, have a global relaxation time smaller than 0.76 ps and larger than 0.20 ps.A comparison between different ranges of FT-Raman and SERS band parameters of DNA extracted from leaf tissues, respectively, is given.We have found that the bands of DNA from Romus 3 and Rebra cultivars are suitable for studying the dynamical behaviour of molecular subgroups, in genomic nucleic acids extracted from in vitro-grown apple plants.
In this paper the Raman total half bandwidths of calf-thymus DNA vibrations have been measured as a function of Zn2+ions concentration, in the presence of a constant concentration of Na+ions, respectively. The dependencies of the total half bandwidths and of the global relaxation times, on DNA molecular subgroup structure and on Zn2+ions concentration, are reported. It is shown that changes in the subpicosecond dynamics of molecular subgroups in ZnDNA complexes can be monitored with Raman spectroscopy.Particularly, the Raman band parameters for the vibrations at 729 cm−1(dA), 792 cm−1(dC, dT and 5'-C–O–P–O–C-3' network), 1094 cm−1(DNA backbone PO2−symmetric stretching), 1377 cm−1(dA, dT, dC), 1489 cm−1(the guanine N-7 and adenine rings) and 1581 cm−1(dG, dA) of ZnDNA complexes, in the presence of Zn2+ions concentrations that varied between 0 and 250 mM, are presented. In our study, the full widths at half-maximum (FWHM) of the bands in calf-thymus DNA complexes are typically in the wavenumber range from 10 to 50 cm−1. It can be observed that the molecular relaxation processes studied in this work, have a global relaxation time smaller than 0.94 ps and larger than 0.21 ps. The limit values are characterizing the dA and dG residues, respectively (vibrations at 729 cm−1and 1489 cm−1).Binding of Zn2+ions to double helical calf-thymus DNA results for some vibrations in smaller global relaxation times and larger bandwidths, respectively, possible as a consequence of the increased interaction of the base moieties with the solvent molecules in unstacked structures.The fastest and the slowest dynamics for different DNA structural subgroups and different Zn2+ions concentrations, respectively, have been analyzed.A comparison between different time scales of the vibrational energy transfer processes, characterizing the ZnDNA structural subgroups has been given.We have found that metal ion's type and concentration are modulators for the (sub)picosecond dynamics of calf thymus DNA molecular subgroups.
In this work the surface-enhanced Raman total half band widths of seven genomic DNAs from leaves of chrysanthemum (Dendranthema grandiflora Ramat.), common sundew (Drosera rotundifolia L.), edelweiss (Leontopodium alpinum Cass), Epilobium hirsutum L., Hypericum richeri ssp. transsilvanicum (Čelak) Ciocârlan, rose (Rosa x hybrida L.) and redwood (Sequoia sempervirens D. Don. Endl.) have been measured. We have shown that surface-enhanced Raman spectroscopy (SERS) can be used to study the fast subpicosecond dynamics of DNA in the proximity of a metallic surface. The dependencies of the total half band widths and the global relaxation times, on the DNA molecular subgroup structure and on the type of genomic DNA, are reported. In our study, the full widths at half-maximum (FWHMs) for the SERS bands of genomic DNAs from different leaf tissues are typically in the wavenumber range from 15 to 55 cm(-1). Besides, it can be observed that molecular relaxation processes studied in this work have a global relaxation time smaller than 0.71 ps and larger than 0.19 ps. A comparison between different ranges of FT-Raman and SERS band parameters, respectively, corresponding to DNA extracted from leaf tissues is given. It is shown that the interaction between DNA and a metallic surface has the potential to lead to a shortening of the global relaxation times, as compared with molecular dynamics in solution. We have found that the surface dynamics of molecular subgroups in plant DNA is, in some cases, about two times faster than the solution dynamics of nucleic acids. This can be rationalized in a qualitative manner by invoking the complex landscape of the interaction energy between the molecule and the silver surface.
The study was performed at Brasov County Hospital, in the Internal Medicine, Diabetes, Gastroenterology and Cardiology Wards with the collaboration of Transylvania University of Brasov, as a study approved by the Ethical Board of the university. The study aimed at assessing the connection between the anthropometric parameters of abdominal adiposity (measured by means of an original experiment designed to determine the curvature of the thoracic-abdominal adiposity for the patients and processed by help of a mathematical model based upon Bezier curves geometry) and the fat load of the liver (assessed by ultrasound by measuring the diameters of both hepatic lobes) for the patients diagnosed with Non-Alcoholic Fatty Liver Disease (NAFLD). The existence of ten types of thoracic-abdominal curves profiles were statistically analyzed in order to evaluate in a simple manner the liver size in NAFLD. The method of diagnosis is based on an easily reproduced experiment, it is original, innovative, non-invasive, and cost-effective. Can be implemented anywhere in the world, there is no need for investment, only for determining the profile of the belly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.