Premise of the study:Low-elevation surveys with small aerial drones (micro–unmanned aerial vehicles [UAVs]) may be used for a wide variety of applications in plant ecology, including mapping vegetation over small- to medium-sized regions. We provide an overview of methods and procedures for conducting surveys and illustrate some of these applications.Methods:Aerial images were obtained by flying a small drone along transects over the area of interest. Images were used to create a composite image (orthomosaic) and a digital surface model (DSM). Vegetation classification was conducted manually and using an automated routine. Coverage of an individual species was estimated from aerial images.Results:We created a vegetation map for the entire region from the orthomosaic and DSM, and mapped the density of one species. Comparison of our manual and automated habitat classification confirmed that our mapping methods were accurate. A species with high contrast to the background matrix allowed adequate estimate of its coverage.Discussion:The example surveys demonstrate that small aerial drones are capable of gathering large amounts of information on the distribution of vegetation and individual species with minimal impact to sensitive habitats. Low-elevation aerial surveys have potential for a wide range of applications in plant ecology.
Premise Seed dispersal allows plants to colonize new sites and contributes to gene flow among populations. Despite its fundamental importance to ecological and evolutionary processes, our understanding of seed dispersal is limited due to the difficulty of directly observing dispersal events. This is particularly true for the majority of plant species that are considered to have gravity as their primary dispersal mechanism. The potential for long‐distance movement of gravity‐dispersed seeds by secondary dispersal vectors is rarely evaluated. Methods We employ whole‐genome assays of maternally inherited cpDNA in Plagiobothrys nothofulvus to resolve patterns of genetic variation due to effective (realized) seed dispersal within a 16 hectare prairie that is characterized by a mosaic of habitat types. We evaluate the effects of microgeographic landscape features extracted from micro‐UAV aerial surveys on patterns of seed dispersal using landscape genetics methods. Results We found evidence of high resistance to seed‐mediated gene flow (effective dispersal) within patches of Plagiobothrys nothofulvus, and strong genetic structure over distances of less than 20 m. Geographic distance was a poor predictor of dispersal distance, while landscape features had stronger influences on patterns of dispersal (distance and direction of seed movement). Patterns of dispersal were best predicted by the combined distribution of flower patches, habitat type, and the network of vole runways, with the latter explaining the largest proportion of variation in the model. Conclusions Our results suggest that primary dispersal occurs mostly within microhabitats and infrequent secondary dispersal may occur over longer distances due to the activity of small mammals and other vertebrates.
Seed dispersal is a crucial ecological and evolutionary process that allows plants to colonize sites and expand their ranges, while also reducing inbreeding depression and facilitating the spread of adaptive genetic variation. However, our fundamental understanding of seed dispersal is limited due to the difficulty of directly observing dispersal events. In recent years, genetic marker methods have furthered our understanding of colonization and range expansion due to seed dispersal. Most investigations focus on regional scales of dispersal, due to low levels of variation in the chloroplast genome (cpDNA), which can serve as an indirect measure of seed dispersal.Here, I employ a whole-genome assay of cpDNA variation in Plagiobothrys nothofulvus to resolve variation due to patterns of seed dispersal within a 400x400 meter section of the Whetstone Savanna Preserve in Central Point, OR, USA. Whetstone is characterized by a mosaic of habitat types, including vernal pools, hummocks of dry prairie, and large Ceanothus cuneatus bushes, as well as a network of vole runways. Plagiobothrys nothofulvus grows in dense patches on hummocks within this prairie. I found evidence of limited seed dispersal in P. nothofulvus, indicated by strong genetic structure over distances of less than 100 meters. There was little evidence that geographic distance predicts genetic distance; environmental features have a stronger influence on dispersal. Habitat preference was the strongest predictor of genetic variation in P. nothofulvus, indicating that it may be a habitat specialist in this prairie. Flower density also accounted for a significant portion of dispersal, which may be a consequence of the annual life history of P. nothofulvus resulting in seasonal turnover and lack of ii competition with adult plants. Least-cost-path analysis indicated that seeds are secondarily dispersed by small mammals along vole runways. Overall, I found significant evidence that landscape features influence dispersal, even at a very fine spatial scale.iii
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.